Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Tiến
Xem chi tiết
Cô Hoàng Huyền
26 tháng 8 2016 lúc 9:48

Trước hết ta chứng minh \(\frac{OA}{AM}+\frac{OB}{BN}+\frac{OC}{CP}=1\)

Thậy vậy \(\frac{OM}{AM}+\frac{ON}{BN}+\frac{ON}{CP}=\frac{S_{BOC}}{S_{ABC}}+\frac{S_{AOC}}{S_{ABC}}+\frac{S_{AOB}}{S_{ABC}}=1\)

Đặt \(\frac{OM}{AM}=x;\frac{ON}{BN}=y;\frac{OP}{CP}=z\Rightarrow x+y+z=1.\)

Khi đó \(a=\frac{OA}{OM}=\frac{AM-OM}{OM}=\frac{AM}{OM}-1=\frac{1}{x}-1\Rightarrow x=\frac{1}{a+1}\)

Tương tự \(\frac{OB}{ON}=b\Rightarrow y=\frac{1}{b+1};\frac{OC}{OP}=c\Rightarrow z=\frac{1}{c+1};\)

Vậy thì \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1.\)

Nếu cả a, b, c đều nhỏ hơn 2 thì \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}>\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\) (Vô lý)

Vậy phải tồn tại một tỉ số không nhỏ hơn 2.

Nếu cả a, b, c đều lớn hơn 2 thì \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\) (Vô lý)

Vậy phải tồn tại một tỉ số không lớn hơn 2.

Hel Trần
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
๖²⁴ ɭo√є⁀ᶦᵈᵒᶫ
25 tháng 2 2020 lúc 15:55

Vai trò \(x,y,z\)như nhau không mất tính tổng quát ta giả sử \(x\ge y\ge z\)

Nếu \(x< 2\)thì \(xyz< 2\cdot2\cdot z=4z=z+3z< 2+3z\le2+x+y+z\)(mâu thuẫn)

Vậy \(x\ge2\)

Nếu \(z>2\)thì \(xyz>x\cdot2\cdot2=4x=x+3x>2+3x\ge2+x+y+z\)(mâu thuẫn)

Vậy \(z\le2\)

Nghĩa là có ít nhất 1 số không nhỏ hơn 2 và ít nhất 1 số không lớn hơn 2

Khách vãng lai đã xóa
VN in my heart
Xem chi tiết
VN in my heart
Xem chi tiết
nguyenquoctinh
Xem chi tiết
Giang Trung Quân
Xem chi tiết
Dương Việt Anh
Xem chi tiết
Phạm Thảo Vân
12 tháng 5 2016 lúc 11:29

Ta có : \(\log_{\frac{a}{b}}^2\frac{c}{b}=\log_{\frac{a}{b}}^2\frac{b}{c};\log_{\frac{b}{c}}^2\frac{a}{c}=\log_{\frac{b}{c}}^2\frac{c}{a};\log_{\frac{c}{a}}^2\frac{b}{a}=\log_{\frac{c}{a}}^2\frac{a}{b}\)

\(\Rightarrow\log_{\frac{a}{b}}^2\frac{c}{b}.\log_{\frac{b}{c}}^2\frac{a}{c}.\log_{\frac{c}{a}}^2\frac{b}{c}=\log_{\frac{a}{b}}^2\frac{c}{b}.\log^2_{\frac{b}{c}}\frac{c}{a}\log_{\frac{c}{a}}^2\frac{a}{b}=\left(\log_{\frac{a}{b}}\frac{c}{b}.\log_{\frac{b}{c}}\frac{c}{a}\log_{\frac{c}{a}}\frac{a}{b}\right)^2=1^2=1\)

\(\Rightarrow\) Trong 3 số không âm \(\log_{\frac{a}{b}}^2\frac{c}{b};\log^2_{\frac{b}{c}}\frac{c}{a};\log_{\frac{c}{a}}^2\frac{a}{b}\) luôn có ít nhất 1 số lớn hơn 1

 

Nhy Lê
Xem chi tiết