Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 6 2022 lúc 20:01

a: \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=7\\2x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=-3\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3\end{matrix}\right.\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=-2\\x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=-2\\2x-8y=20\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11y=-22\\x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=10+4y=10-8=2\end{matrix}\right.\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=-4\\5x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3x+2=-15+2=-13\end{matrix}\right.\)

d: \(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=7\\2x-4y=-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=21\\x=-7+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-1\end{matrix}\right.\)

Minh tú Trần
Xem chi tiết
sdsdfdfdf
23 tháng 10 2021 lúc 13:19

a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+3y=6\\3x+3y=2\end{cases}}\)

Dễ thấy điều trên là vô lí nên hệ phương trình không có nghiệm

Khách vãng lai đã xóa
sdsdfdfdf
23 tháng 10 2021 lúc 13:20

b) \(\hept{\begin{cases}3x-2y=1\\-6x+4y=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6x-4y=2\\6x-4y=0\end{cases}}\)

Hệ này cũng vô nghiệm

Khách vãng lai đã xóa
sdsdfdfdf
23 tháng 10 2021 lúc 13:21

c) \(\hept{\begin{cases}4x-4y=2\\-2x+2y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x-2y=1\\2x-2y=1\end{cases}}\)

Hệ này có vô số nghiệm 

Khách vãng lai đã xóa
Nguyễn Hồng Hạnh
Xem chi tiết
Phương Anh
Xem chi tiết
Dương Hoàng Minh
19 tháng 6 2016 lúc 7:39

ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiucche

huynh thi tuyetnghi
Xem chi tiết
Phạm Thị Thùy Linh
2 tháng 12 2019 lúc 19:25

\(a,\)\(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)\(\Rightarrow3x+y+2x-y=3+7\)\(\Rightarrow5x=10\Rightarrow x=2\)

Mà \(3x+y=3\Rightarrow3.2+y=3\Rightarrow y=3-6=-3\)

Vậy \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)

\(b,\hept{\begin{cases}2x+5y=8\\2x-3y=0\end{cases}}\)\(\Rightarrow2x+5y-\left(2x-3y\right)=8-0\)

\(\Rightarrow2x+5y-2x+3y=8\)\(\Rightarrow8y=8\Rightarrow y=1\)

Mà \(2x+5y=8\Rightarrow2x+5=8\Rightarrow2x=\frac{8-5}{2}=\frac{3}{2}\)

Vậy \(\hept{\begin{cases}x=\frac{3}{2}\\y=1\end{cases}}\)

\(c,\hept{\begin{cases}4x+3y=6\\2x+y=4\end{cases}\Rightarrow\hept{\begin{cases}4x+3y=6\\4x+2y=8\end{cases}}}\)

\(\Rightarrow4x+3y-\left(4x+2y\right)=6-8\)

\(\Rightarrow4x+3y-4x-2y=-2\)

\(\Rightarrow y=-2\)

Mà \(4x+3y=6\Rightarrow4x-6=6\Rightarrow4x=12\Leftrightarrow x=3\)

Vậy \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

Làm tương tự nha cậu 

Khách vãng lai đã xóa
Nguyễn Anh Quân
18 tháng 5 2020 lúc 20:32

JKILO

Khách vãng lai đã xóa
Phan Nghĩa
18 tháng 5 2020 lúc 20:37

làm cả hai phương pháp cho nó máu :D

a, C1 : \(\hept{\begin{cases}3x+y=3\left(1\right)\\2x-y=7\left(2\right)\end{cases}}\)

Lấy pt 1 cộng pt 2 có : \(3x+y+2x-y=3+7\)

\(< =>5x=10< =>x=2\)

Thay vào pt 2 có : \(2x-y=7\)

\(< =>4-y=7< =>y=-3\)

Vậy ...

C2: \(\hept{\begin{cases}3x+y=3\left(1\right)\\2x-y=7\left(2\right)\end{cases}}\)

\(< =>\hept{\begin{cases}y=3-3x\\2x-\left(3-3x\right)=7\end{cases}}\)

\(< =>2x-3+3x=7\)

\(< =>5x=10< =>x=2\)

Thay vào pt 2 có : \(2x-y=7\)

\(< =>4-y=7< =>y=-3\)

Vậy ... 

Khách vãng lai đã xóa
Thành Trương
Xem chi tiết
Thành Trương
11 tháng 6 2018 lúc 20:44

@Hắc Hường

Huy Công Tử
Xem chi tiết
Hà Phương
Xem chi tiết
Lê Hà Phương
Xem chi tiết
ʚ๖ۣۜAηɗσɾɞ‏
3 tháng 10 2020 lúc 15:18

\(_{\hept{2y^2}-x^2+1=\sqrt{3y^4-4x^2+6y^2-2x^2y^2\left(2\right)}}2x^4+3x^3+45x=27x^2\left(1\right)\)

ĐK: \(2y^2+1\ge1\)

Phương trình 2 tương đương:

\(\left(2y^2-x^2+1\right)^2=3y^4-4x^2+6x^2-2x^2y^2\)

\(\Leftrightarrow y^4+2x^2-2x^2y^2+x^{2+2}+1-2y^2=0\)

Các lập phương được cấu tạo từ \(x^2y^2\)nên :

\(\Leftrightarrow\left(y^4-2x^2y^2+y^4\right)-2\left(y^2-x^2\right)+1=0\)

Đảo chiều:

\(\Leftrightarrow\left(y^2-x^2-1\right)^2=0\)

\(\Leftrightarrow y^2=x^2+1\left(3\right)\)

Thế \(x^2+1=y^2\)vào phương trình (1) ta có :

\(2x^4+3x^3+45x=27\left(x^2+1\right)\)

\(\Leftrightarrow2x^4+3x^3-27x^2+45x-27=0\)

\(\Leftrightarrow\left(x-\frac{3}{2}\right)\left(2x^3+6x^2-18x+18\right)=0\)

Chuyển: \(x=\frac{3}{2}\Rightarrow y=\frac{\sqrt{13}}{2}\)

\(\Leftrightarrow[x=-\sqrt[3]{16-\sqrt[3]{4}}-1\Rightarrow y=\sqrt{\left(\sqrt[3]{16}+\sqrt[3]{4}+1\right)^2+1}\)

Khách vãng lai đã xóa