Giải các hệ phương trình sau:
1) \(\begin{cases} x + 2y = 5\\ x^2 + 2y^2 - 2xy = 5 \end{cases}\)
2) \(\begin{cases} 4x+4y-5=0\\ (x+1)^2+(y-3)^2=1 \end{cases}\)
3) \(\begin{cases} a^2+(b-2)^2=b^2\\ a^2+(b-1)^2=1 \end{cases}\)
4) \(\begin{cases} ab-5a-2b+8=0\\ a^2-4a=b^2-10b+24 \end{cases}\)
5) \(\begin{cases} xy+x-2=0\\ 2x^3-x^2y+x^2+y^2-2xy-y=0 \end{cases}\)
6) \(\begin{cases} x+y=1-2xy\\ x^2+y^2=1 \end{cases}\)
7) \(\begin{cases} x+y+{1\over x}+{1\over y}=5\\ x^2+y^2+{1\over x^2}+{1\over y^2}=9 \end{cases}\)
8) \(\begin{cases} x^2+y^2-x+y=2\\ xy+x-y=-1 \end{cases}\)
9) \(\begin{cases} x^3-3x^2+9x+22=y^3+3y^2-9y\\ x^2+y^2-x+y={1\over 2} \end{cases}\)
10) \(\begin{cases} x^2-4x=3y\\ y^2-4y=3x \end{cases}\)