Giải hệ phương trình \(\hept{\begin{cases}x^2+8=xy^2+2x\\y^2+8=x^2y+2y\end{cases}}\)
Giải các hệ phương trình sau:
1) \(\begin{cases} x + 2y = 5\\ x^2 + 2y^2 - 2xy = 5 \end{cases}\)
2) \(\begin{cases} 4x+4y-5=0\\ (x+1)^2+(y-3)^2=1 \end{cases}\)
3) \(\begin{cases} a^2+(b-2)^2=b^2\\ a^2+(b-1)^2=1 \end{cases}\)
4) \(\begin{cases} ab-5a-2b+8=0\\ a^2-4a=b^2-10b+24 \end{cases}\)
5) \(\begin{cases} xy+x-2=0\\ 2x^3-x^2y+x^2+y^2-2xy-y=0 \end{cases}\)
6) \(\begin{cases} x+y=1-2xy\\ x^2+y^2=1 \end{cases}\)
7) \(\begin{cases} x+y+{1\over x}+{1\over y}=5\\ x^2+y^2+{1\over x^2}+{1\over y^2}=9 \end{cases}\)
8) \(\begin{cases} x^2+y^2-x+y=2\\ xy+x-y=-1 \end{cases}\)
9) \(\begin{cases} x^3-3x^2+9x+22=y^3+3y^2-9y\\ x^2+y^2-x+y={1\over 2} \end{cases}\)
10) \(\begin{cases} x^2-4x=3y\\ y^2-4y=3x \end{cases}\)
Giải hệ phương trình
\(\hept{\begin{cases}\sqrt{x+1}+\sqrt{4-2y}+\sqrt{5+2y-\left(x-1\right)^2}=5\\5x^4+\left(x-y\right)^2=\left(10x^3+y\right)y\end{cases}}\)
\(\hept{\begin{cases}2x^3-9y^3=\left(x-y\right)\left(2xy+3\right)\\x^2-xy+y^2=3\end{cases}}\)
giải hệ phương trình \(\left\{{}\begin{matrix}xy^2+3x^2=2y\\x^2y+y^2=-2x\end{matrix}\right.\)
Giải hệ phương trình: \(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}+4=0\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}-4=0\end{cases}}\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2+y^2+xy+1=2x\\x\left(x+y\right)^2+x-2=2y^2\end{matrix}\right.\)
Giải hệ phương trình: \(\hept{\begin{cases}\frac{7}{2}+\frac{3y}{x+y}=\sqrt{x}+4\sqrt{y}\\\left(x^2+y^2\right)\left(x+1\right)=4+2xy\left(x-1\right)\end{cases}}\)
a) tìm số tự nhiên x và số nguyên y thỏa mãn: \(x^2y+2xy+x^2-2018x+y=-1\)
b) giải hệ phương trình \(\left\{{}\begin{matrix}x^2-2y^2+xy=2y-2x\\\sqrt{x+2y+1}+\sqrt{x^2+y+2}=4\end{matrix}\right.\)