Chứng tỏ số \(\dfrac{2n+1}{3n+2}\) là phân số tối giản.
Chứng tỏ rằng phân số \(\dfrac{2n+1}{3n+2}\) là phân số tối giản
gọi d là ƯCLN(2n+1;3n+2).theo bài ra ta có:
2n+1 chia hết cho d=>6n+3 chia hết cho d
3n+2 chia hết cho d=>6n+4 chia hết cho d
=>1 chia hết cho d=>d=1
vậy ...
Gọi d ϵ ƯCLN\(\left(\dfrac{2n+1}{3n+2}\right)\)
Nên 2n+1⁝ d và 3n+2 ⁝ d
⇒ 3(2n+1) ⁝ d và 2(3n+2)
⇒ 6n+3 ⁝ d và 6n+4 ⁝ d
⇒ ( 6n+4 - 6n+3) ⁝ d
⇒ 1⁝ d
⇒ d= 1
Vậy:..
Chúc bạn học tốt
Chứng tỏ rằng mọi phân số có dạng :
\(\dfrac{2n+3}{3n+5}\) = ( n ∈ N ) đều là phân số tối giản .
Giải:
Gọi ƯCLN (2n+3;3n+5)=d
Ta có:
2n+3:d =>3. (2n+3):d
3n+5:d=> 2. (3n+5):d
=> [3. (2n+3) - 2.(3n+5)]:d
=>(6n+9 - 6n-10): d
=> -1:d
=> d={1,-1}
Tick mình nha
chứng tỏ rằng phân số 2n+1/3n+2 chứng tỏ là phân số tối giản
GỌI Đ LÀ ƯC (2N+1/3N+2)
=>2N+2 CHIA HẾT CHO Đ=>3(2N+3) CHIA HẾT CHO Đ
=>3N+2CHIA HẾT CHO Đ=>2(3N+4) CHIA HẾT CHO DD
=>(6N+3)-(6N+4) CHIA HẾT CHO Đ
=>1 CHIA HẾT CHO Đ
=>Đ=1
=>2N+1/3N+2 LÀ P/S TỐI GIẢN
chứng tỏ rằng phân số 2n+1\3n+2 là phân số tối giản ?
https://h.vn/hoi-dap/question/39186.html
Gọi d là ƯCLN ( 2n + 1 ; 3n + 2 )( d thuộc N* )
=> 2n + 1 chia hết cho d ; 3n + 2 chia hết cho d
=> 3( 2n + 1 ) chia hết cho d ; 2( 3n + 2 ) chia hết cho d
=> 6n + 3 chia hết cho d ; 6n + 4 chia hết cho d
=> ( 6n + 4 ) - ( 6n + 3 ) chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN( 2n + 1 ; 3n + 2 ) = 1
Chứng tỏ phân số 2n + 1/3n + 2 tối giản
Gọi d là ƯC của 2n + 1 và 3n + 3
Ta có: 2n + 1 ⋮ d => 6n + 3 ⋮ d
Và 2n + 2 ⋮ d => 6n + 4 ⋮ d
Do đó:
(6n + 4) - (6n + 3) ⋮ d
=> (6n - 6n) (4 - 3) ⋮ d
=> 1 ⋮ d => d = 1
Hay ƯC(2n + 1, 3n + 2) = 1
=> 2n + 1 / 3n + 2 tối giản
chứng tỏ rằng phân số 2n+1\3n+2 là phân số tối giản ?
GIẢI TIẾP : Từ [1] và [2] => 1 chia hết cho d => d = 1
=> dpcm
cho minh cai dung
gọi d là ƯCLN(2n+1;3n+2).theo bài ra ta có:
2n+1 chia hết cho d=>6n+3 chia hết cho d
3n+2 chia hết cho d=>6n+4 chia hết cho d
=>1 chia hết cho d=>d=1
=>ĐPCM
Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)
=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d
=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d
=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d
=> (6n + 4) - (6n + 3) chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n + 1; 3n + 2) = 1
Chứng tỏ phân số 2n + 1/3n + 2 tối giản
chứng tỏ rằng phân số 2n+1 phần 3n+2 là phân số tối giản
Gọi d là ƯCLN(2n+1;3n+2)
Ta có 2n+1 chia hết cho d nên 3(2n+1) cũng chia hết cho d hay 6n+3 cũng chia hết cho d
3n+2 chia hết cho d nên 2(3n+2) cũng chia hết cho d hay 6n+4 cũng chia hết cho d
Ta suy ra [(6n+4)-(6n+3)] chia hết cho d
(6n+4-6n-3) chia hết cho d
1 chia hết cho d
nên d=1
Vì ƯCLN(2n+1;3n+2)=1 nên 2n+1 phần 3n+2 là phân số tối giản (tick nhé )
Gọi a là ước chung lớn nhất của \(\frac{2n+1}{3n+2}\)
suy ra 2n+1 chia hết cho a
3n+2 chia hết cho a
nên 3.(2n+1) chia hết cho a
2(3n+2) chia hết cho a
=> 6n+3 chia hết cho a
6n+4 chia hết cho a
vậy (6n+4)-(6n+3) chia hết cho a
1 chia hết cho a
vậy a=1
=> phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản.
Chứng tỏ phân số 2n+1/3n+2 là phân số tối giản với mọi n thuộc Z
Gọi d là ƯCLN của 2n + 1 và 3 n + 2
Ta có
2n+1 chia hết cho d => 3 ( 2n+1) chia hết cho d => 6n +3 chia hết cho d (1)
3n + 1 chia hết cho d => 2(3n+1) chia hết cho d => 6n + 4 Chia hết cho d ( 2 )
Từ (1), (2)
=> 6n+4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN ( 2n + 1 : 3n + 2 ) = 1
=> Phân số 2n+1/3n+2 tối giản với mọi n thuộc Z
Phương pháp chứng minh 1 p/s tối giản là :
Chứng minh ƯCLN của tử và mẫu = 1
Còn cách làm : Tự làm
Gọi d= ƯCLN (2n+1, 3n+2)(d thuộc N*)
\(\Rightarrow\)2n+1\(⋮\)d
3n+2\(⋮\)d
\(\Rightarrow\)(2n+1).3\(⋮\)d
(3n+2).2\(⋮\)d
\(\Rightarrow\)6n+3\(⋮\)d
6n+4\(⋮\)d
\(\Rightarrow\)(6n+4)-(6n+3)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
\(\Rightarrow\)2n+1/3n+2 là phân số tối giản.
\(\Rightarrow\)Đpcm.
Chứng tỏ rằng phân số có dạng 2n+1/3n+2 là phân số tối giản.( dấu / là dấu phân số)
Gọi ước chung lớn nhất của 2n + 1 và 3n + 2 là x , ta có:
3( 2n + 1 ) - 2( 3n + 2) = -1 chia hết cho x
=> x thuộc -1;1
Vậy 2n + 1 và 3n + 2 là hai số nguyên tố cùng nhau. Vậy phân số có dạng 2n+1 / 3n + 2 là phân số tối giản
Gọi ( 2n + 1 , 3 n + 2 ) là d ( d thuộc Z )
=> 2n + 1 chia hết cho d => 3 ( 2n + 1 ) chia hết cho d => 6 n + 3 chia hết cho d
3n + 2 chia hết cho d=> 2 ( 3n + 2 ) chia hết cho d => 6n + 4 chia hết cho d
=> (6n+4) - ( 6n + 3 ) chia hết cho d
=> 1 chia hết cho d => d thuộc Ư ( 1 ) ={ -1 ; 1 }
=> 2n + 1 / 3n + 2 là phân số tối giản ( đpcm)
Gọi ƯC nguyên tố của 2n+1 và 3n+2 là d
ta có :2n+1chia hết cho d
3n+2chia hết cho d
=> 6n+3-(6n+4)chia hết cho d
=>-1chia hết cho d=> d=1
Vậy 2n+1 và 3n+2 là hai số nguyên tố cùng nhau =>2n+1/3n+2 là phân số tối giản
chứng tỏ rằng A=2n+1/3n+2 là phân số tối giản
Gọi ƯCLN(2n+1; 3n+2) là d. Ta có:
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+2 chia hết cho d => 6n+4 chia hết cho d
=> 6n+4-(6n+3) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(2n+3; 3n+2) = 1
=>\(\frac{2n+1}{3n+2}\)là phân số tối giản (đpcm)
Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)
=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d
=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d
=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d
=> (6n + 4) - (6n + 3) chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n + 1; 3n + 2) = 1
Chứng tỏ phân số 2n + 1/3n + 2 tối giản