cho 2 góc \(\widehat{A};\widehat{B}\) bù nhau và tỉ lệ với 5 và 4.tính số đo của \(\widehat{A;}\widehat{B}\)
CHO TAM GIAC ABC biết:
a)góc A bằng 2 lần góc Bvà góc c trừ góc B bằng 36 đọ
b)\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{1}=\frac{\widehat{C}}{2}\)
Theo đề, ta có:\(\hept{\begin{cases}\widehat{A}=2\widehat{B}\\\widehat{C}-\widehat{B}=36^0\end{cases}\Rightarrow\hept{\begin{cases}\widehat{A}=2\widehat{B}\\\widehat{C}=36^0+\widehat{B}\end{cases}}}\)
\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (tổng ba góc của một tam giác)
\(\Rightarrow2\widehat{B}+\widehat{B}+36^0+\widehat{B}=180^0\)
\(\Rightarrow4\widehat{B}=144^0\Rightarrow\widehat{B}=36^0\)
\(\widehat{A}=2\widehat{B}=2.36^0=72^0\)
\(\widehat{C}=180^0-36^0-72^0=72^0\)
b) \(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{1}=\frac{\widehat{C}}{2}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+1+2}=\frac{180^0}{6}=30^0\)
\(\Rightarrow\hept{\begin{cases}\widehat{A}=30^0.3=90^0\\\widehat{B}=30^0.1=30^0\\\widehat{C}=30^0.2=60^0\end{cases}}\)
Cho tứ giác ABCD có phân giác trong của góc A và góc B cắt nhau tại E . Phân giác ngoài của góc A và B cắt nhau tại F . Chứng minh
góc AEB =\(\frac{C\widehat{ }+D\widehat{ }}{2}\) và góc AFB = \(\frac{A\widehat{ }+\widehat{B}}{2}\)
cho góc AOB=135 độ.tia OC nằm trong góc AOB.góc AOC=1/2 góc COB
a)tính góc AOC
b)\(\widehat{AOB},\widehat{BOC},\widehat{COA}\)góc nào là góc nhọn,góc vuông ,góc tù
Cho tứ giác ABCD. Tìm góc \(\widehat{A},\widehat{C},\widehat{D}\) biết \(\widehat{B}=60^0\) và \(\widehat{D}=\dfrac{3}{2}\widehat{B}=\dfrac{4}{3}\widehat{C}\)
\(\widehat{D}=\dfrac{3}{2}\widehat{B}=\dfrac{3}{2}.60^0=90^0\)
\(\widehat{D}=\dfrac{4}{3}\widehat{C}\Rightarrow\widehat{C}=\dfrac{3}{4}\widehat{D}=\dfrac{3}{4}.90^0=67,5^0\)
\(\widehat{A}=360^0-\widehat{B}-\widehat{C}-\widehat{D}=360^0-60^0-90^0-67,5^0=142,5^0\)
Cho tam giác ABC, góc B > góc C. Đường thẳng chứa tia phân giác góc ngoài tại đỉnh A cắt đường thẳng BC tại N. Tia phân giác trong của góc A cắt BC tại M. Chứng minh \(\widehat{ANC}=\dfrac{\widehat{AMC}-\widehat{AMB}}2\).
Cho 2 góc AOB và BOC kề nhau , gọi OD là tia phân giác góc AOB
a. Chứng minh góc COD= \(\frac{\widehat{AOC}+\widehat{BOC}}{2}\)
b. Giả sử góc BOC > góc BOA và tia OE nằm giữa 2 tia OB và OC. Chứng minh \(\widehat{BOE=}\frac{\widehat{BOC}-\widehat{AOB}}{2}\)
cho tam giac abc can tai a
a, Biết \(\widehat{B}\) =\(100^o\) . Tính \(\widehat{A.}\widehat{C}\)
b, \(\widehat{A}=2\widehat{B}\) . Tính 3 góc
c,Biết \(\widehat{B}=2\widehat{A}+\widehat{C}\) . Tính 3 góc
Bài 2: Cho góc tù \(\widehat{xOy}\). Vẽ \(\widehat{xOt}\) và \(\widehat{yOz}\) là 2 góc kề bù với \(\widehat{xOy}\). Chứng minh \(\widehat{xOt}\) và \(\widehat{yOz}\) đối đỉnh.
xOy + tOx = 180o ( kề bù)
xOy + yOz = 180o ( kề bù)
mà xOy = xOy.
=> 2 góc này bằng nhau ( 2 góc cùng kề bù với góc thứ 3 thì bằng nhau).
=> 2 góc đối đỉnh.
like và tim bạn nhé
2 góc cùng kề bù với 1 góc thì = nhau vì:
vd: góc thứ 3 = 80o thì 2 kề bù với góc 80o sẽ = 100o
nghe giống người thứ 3 nhưng không phải nha.
Cho Hình 16, biết a // b.
a) Chỉ ra góc ở vị trí so le trong, đồng vị với góc \(\widehat {{B_2}}\)
b) Tính số đo các góc \(\widehat {{A_4}},\widehat {{A_2}},\widehat {{B_3}}\)
c) Tính số đo các góc \(\widehat {{B_1}},\widehat {{A_1}}\).
a) Góc ở vị trí so le trong với góc \(\widehat {{B_2}}\) là: \(\widehat {{A_4}}\)
Góc ở vị trí đồng vị với góc \(\widehat {{B_2}}\) là: \(\widehat {{A_2}}\)
b) Vì a // b nên:
+) \(\widehat {{A_4}} = \widehat {{B_2}}\)( 2 góc so le trong), mà \(\widehat {{B_2}} = 40^\circ \) nên \(\widehat {{A_4}} = 40^\circ \)
+) \(\widehat {{A_2}} = \widehat {{B_2}}\) ( 2 góc đồng vị), mà \(\widehat {{B_2}} = 40^\circ \) nên \(\widehat {{A_2}} = 40^\circ \)
Ta có: \(\widehat {{B_2}} + \widehat {{B_3}} = 180^\circ \) ( 2 góc kề bù) nên \(40^\circ + \widehat {{B_3}} = 180^\circ \Rightarrow \widehat {{B_3}} = 180^\circ - 40^\circ = 140^\circ \)
c) Ta có: \(\widehat {{B_2}} + \widehat {{B_1}} = 180^\circ \) ( 2 góc kề bù) nên \(40^\circ + \widehat {{B_1}} = 180^\circ \Rightarrow \widehat {{B_1}} = 180^\circ - 40^\circ = 140^\circ \)
Vì a // b nên \(\widehat {{A_1}} = \widehat {{B_1}}\) (2 góc đồng vị) nên \(\widehat {{A_1}} = 140^\circ \)
cho \(\Delta ABC\)có \(\widehat{B}>\widehat{C}\),AD là phân giác góc A.C/m
a)góc ADC-ADB=Góc B>C
b)Phân giác góc ngoài tại góc A của ABC cắt BC ở E.C/m góc \(AEB=\frac{1}{2}\left(\widehat{B}-\widehat{C}\right)\)
Đợi tí xắp xong rồi nha bạn
Câu b: ta có góc adc = góc E+90=góc E+góc E+góc ADB
suy ra góc E = 1/2 ( góc b - góc c )