Chứng minh trong một tam giác vuông , cạnh đối diện với góc 30 độ = 1/2 cạnh huyền
Chứng minh trong một tam giác vuông , cạnh đối diện với góc 30 độ = 1/2 cạnh huyền
Giúp mk với
Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M(dấu hiệu nhận biết)
mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc)
Ta có điều phải chứng minh
Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
Mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>Tam giác AMC cân tại M(dấu hiệu nhận biết)
Mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
Mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc)
Suy ra ta có điều phải chứng minh
{ Giả thiết: ∆ABC vuông tại A,có ^ACB = 30°
{ KL: cạnh đối diện ^ACB (tức cạnh AB) = nửa cạnh huyền (tức cạnh BC)
*Chứng minh :
- Có ^ACB = 30° --> ^ABC = 60° ( do tổng 3 góc trong 1 tam giác = 180°)
- Gọi M là trung điểm BC --> MB = MC = BC/2
- Trong tam giác vuông thì đường trung tuyến xuất phát từ đỉnh góc vuông = 1/2 cạnh huyền --> AM = 1/2BC = BM
- Xét ∆ABM có AM = BM --> ∆ABM cân cại M,lại có ^ABM = 60°
--> ∆ABM là tam giác đều (tam giác cân có 1 góc = 60° thì là tam giác đều)
--> AB = AM = BM = 1/2BC
Vậy : trong một tam giác vuông , cạnh đối diện với góc 30 độ = 1/2 cạnh huyền (đpcm)
Chứng minh trong một tam giác vuông , cạnh đối diện với góc 30 độ = 1/2 cạnh huyền [ Giải bằng 3 cách ]
Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M(dấu hiệu nhận biết)
mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc)
Ta có điều phải chứng minh
*Chứng minh :
- Có ^ACB = 30° --> ^ABC = 60° ( do tổng 3 góc trong 1 tam giác = 180°)
- Gọi M là trung điểm BC --> MB = MC = BC/2
- Trong tam giác vuông thì đường trung tuyến xuất phát từ đỉnh góc vuông = 1/2 cạnh huyền --> AM = 1/2BC = BM
- Xét ∆ABM có AM = BM --> ∆ABM cân cại M,lại có ^ABM = 60°
--> ∆ABM là tam giác đều (tam giác cân có 1 góc = 60° thì là tam giác đều)
--> AB = AM = BM = 1/2BC (đpcm)
Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M(dấu hiệu nhận biết)
mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc) (đpcm)
Thử cách này xem sao (dốt hình, ko bt đúng hay sai)
GT:Tam giác ABC vuông tại A; ^ABC = 30o
KL: AC = 1/2 . BC
Chứng minh: Trên tia đối AC, lấy điểm K sao cho AK = AC. Khi đó
\(\Delta ABC=\Delta ABK\) (2 cạnh góc vuông)
Suy ra \(BC=BK\) (1) và ^ABC = ^ABK = 30o (2) và AC = AK
Từ (1) suy ra tam giác BCK cân tại B (3)
Từ (2) suy ra ^CBK = 60o (4)
Từ (3) và (4), xét tam giác BCK cân tại B có một góc bằng 60o nên tam giác BCK đều tức là BC = BK = CK = AC + AK (do AC + AK = CK mà) = 2AC (do AC = AK)
Ta có: \(BC=2AC\Leftrightarrow AC=\frac{1}{2}BC^{\left(đpcm\right)}\)
Chứng minh rằng :
a) Nếu tam giác vuông có một góc bằng 30 độ thì cạnh đối diện với góc đấy bằng nửa cạnh huyền.
b) Nếu tam giác vuông có một cạnh góc vuông bằng nửa cạnh huyền thì góc đối diện với cạnh đấy bằng 30 độ
a)Gọi M là trung điểm cạnh huyền BC, Góc B=30 độ => Góc C=60 độ
Theo t/c đường trung tuyến trong tam giác vuông : AM=1/2.BC=MC
=> Tam giác AMC cân tại A
Mà góc C=60 độ => tâm giác AMC đều => AC=MC=1/2.BC => Cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền
b)Theo t/c đường trung tuyến trong tam giác vuông : AM=1/2.BC=MC
Mà AC=BC => Tam giác AMC đều => Góc C=60 độ => Góc A=30 độ =>góc đối diện với cạnh bằng 1/2 cạnh huyền bằng 30 độ
Chứng minh:
Ta có: ^C= 30° => ^B= 60°
Trên cạnh BC lấy điểm M sao cho AB = BM.
=> ∆ABM cân tại B mà ^B= 60°
=>∆ABM đều
=> AB= BM= AM (1)
và ^BAM= ^B= ^BMA= 60°
∆ABC vuông tại A
=> ^B + ^C = 90°
=> 60° + ^C = 90°
=> ^C = 30° (2)
Ta lại có : ^BAM + ^MAC = ^BAC
=> 60° + ^MAC = 90°
=> ^MAC = 30° (3)
Từ (1) và (2): => ^MAC = ^C ( = 30°)
=> ∆AMC cân tại M
=> AM = MC (4)
Từ (1) và (4): => AB = BM =mc
=> 2AB = BM + MC
=> 2AB = BC
=> AB = BC/2 (đpcm)
b)
Ví dụ tam giác ABC vuông tại A
trên cạnh BC lấyđiểm D sao cho AB=AD
mà tam giác ABC có góc A =90 độ
giả dụ góc C = 30 độ
thì góc B=60 độ
mà AB=BD
=>tam giác ABD là tam giác đều
=>góc BAD =60 độ
=>góc DAC=30 độ
mà góc C cũng = 30 độ
=>tam giác ADC cân tại D
=>AD=DC
có AB=BD=AD
=>D là trung điểm của BC
=> bạn tự kết luận
Chứng Minh: nếu một tam giác vuông có 1 cạnh góc vuông bằng 1/2 cạnh huyền thì góc đối diện với cạnh góc vuôn bằng 30 độ
Chứng minh rằng:
a) Nếu tam giác vuông có một góc bằng 30 độ thì cạnh đối diện với góc ấy bằng nửa cạnh huyền.
b) Nếu tam giác vuông có một cạnh góc vuông bằng nửa cạnh huyền thì góc đối diện với góc ấy bằng 30 độ
Chứng minh rằng nếu 1 cạnh góc vuông trong 1 tam giác vuông bằng nửa cạnh huyền (về độ dài) thì góc đối diện với cạnh đó bằng 30 độ
Gọi M là trung điểm của tam giác vuông ABC tại A, AB bằng nửa BC.
=> AM là đường trung tuyến của tam giác ABC.
\(\Rightarrow\hept{\begin{cases}AM=\frac{1}{2}BC\\AB=\frac{1}{2}BC\end{cases}}\)
\(\Rightarrow AB=AM=\frac{1}{2}BC=BM.\)
\(\Rightarrow\Delta ABM\) đều.
\(\Rightarrow\widehat{B}=60^0.\)
\(\Rightarrow\widehat{C}=90^0-60^0=30^0\)
Vậy nếu 1 cạnh góc vuông của 1 tam giác vuông bằng nửa cạnh huyền thì góc đối diện với cạnh đó bằng 30 độ.
chứng minh trong 1 tam giác vuông có 1 góc nhon bằng 30 độ thì cạnh đối diện với góc ấy bằng nửa cạnh huyền
Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M(dấu hiệu nhận biết)
mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc)
Ta có điều phải chứng minh
Nêu bạn thấy mình làm đúng thì tích nha
Chứng minh rằng: Nếu một tam giác vuông có một góc bằng 30 độ thì cạnh đối diện với góc ấy bằng nửa cạnh huyền
Xét ΔABC vuông tại A có góc B+góc C=90 độ
=>góc C=60 độ
Gọi M là trung điểm của BC
ΔABC vuông tại A có AM là trung tuyến
nen MA=MB=MC
=>MA=MC
mà góc C=60 độ
nên ΔMAC đều
=>AC=AM=BC/2(ĐPCM)
Chứng minh rằng nếu một tam giác vuông có một góc nhọn bằn 30 độ thì cạnh góc vuông đối diện với nó bằng nửa cạnh huyền.