Rút gọn:
A=(a+b+c)^3+(a−b−c)^3−6a(b+c)^2
Rút gọn:
a, A= \(3-\left|3-x\right|\)
b, B= \(\left|x-6\right|+\left|6-x\right|-2\)
c, C= \(\left|-x-1\right|+\left|-x-5\right|-x\)
Rút gọn:
a, A= \(3-\left|3-x\right|\)
b, B= \(\left|x-6\right|+\left|6-x\right|-2\)
c, C= \(\left|-x-1\right|+\left|-x-5\right|-x\)
Bài 1: Chứng minh rằng :
cho ab=2;a+b=-3 tính giá trị biểu thức a^3 + b^3
Bài 2: rút gọn:
a, 2(x-y)×(x+y)+(x+y)^2(x-y)^2
b, x(x+4)×(x-4)-(x^2+1)×(x^2-1)
c, (a+b-c)-(a-c)^2-2ab+2ab
Bài 2:
b: Ta có: \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x^3-4x-x^4+1\)
\(=-x^4+x^3-4x+1\)
c: Ta có: \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ab\)
\(=\left(a+b-c-a+c\right)\left(a+b-c+a-c\right)\)
\(=b\left(2a+b-2c\right)\)
\(=2ab+b^2-2bc\)
\(a + b = -3\)
\(ab = 2\)
Từ \(ab = 2\), ta có thể giải ra được \(a = \frac{2}{b}\) hoặc \(b = \frac{2}{a}\).
Đặt \(a = \frac{2}{b}\) vào \(a + b = -3\) ta được:
\(\frac{2}{b} + b = -3\)
\(2 + b^2 = -3b\)
\(b^2 + 3b + 2 = 0\)
\((b + 1)(b + 2) = 0\)
\(b = -1\) hoặc \(b = -2\).
Khi \(b = -1\), ta có \(a = -2\). Khi \(b = -2\), ta có \(a = -1\).
Vậy giá trị của biểu thức \(A = a^3 + b^3\) khi \(a = -2, b = -1\) hoặc khi \(a = -1, b = -2\).
Rút gọn biểu thức A =(a+b+c)^3 + (a-b-c)^3 - 6a(b+c) ^2 - 2a^3 + 88
Rút gọn:
a) A=(5-2x)2-4x(x-5)
b) B= (4-3x)(4+3x)+(3x+1)2
c) C= (x+1)3-x(x2+3x+3)
d) D=(2021x-2020)2-2(2021x-2020)(2020x-2021)+(2020x-2021)
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
Rút gọn biểu thức A=(a+b+c)^3+(a-b-c)^3-6a(b+c)^2-2a^3+8 ta được??????
Giúp mình với các bạn ơooooooooooooooooooooi
Rút gọn: \(\left(a+b+c\right)^3-\left(b+c-a\right)^3-6a\left(b+c\right)^2\)
Rút gọn: \(\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
bạn tham khảo link này nhé:
https://olm.vn/hoi-dap/detail/101383958371.html
#hok tốt#
\(\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
\(=a^3+b^3+c^3+a^3-b^3-c^3-6a\left(b^2+c^2\right)\)
\(=\left(a^3+a^3\right)+\left(b^3-b^3\right) +\left(c^3-c^3\right)-6a\left(b^2+c^2\right)\)
\(=2a^3-6a\left(b^2+c^2\right)\)
\(=2a^2\cdot a-6a\left(b^2+c^2\right)\)
\(=a\left[2a^2-6\left(b^2+c^2\right)\right]\)
\(\text{Chắc là vậy !}\)
Link nè :
https://olm.vn/hoi-dap/detail/101383958371.html
k mk nhé mk hông giải nên mk cho bn link rùi nè
Rút gọn:
a) A= \(\dfrac{x+y}{x-y}-\dfrac{x}{x+y}+\dfrac{2y^2}{x^2-y^2}\)
b) B= \(\dfrac{x}{x-2}-\dfrac{10}{\left(x-2\right)\left(x+3\right)}-\dfrac{x-1}{x+3}\)
c) C= \(\dfrac{1}{x-1}-\dfrac{x-1}{x^2+x+1}-\dfrac{3}{x^3-1}\)
a: \(A=\dfrac{x^2+2xy+y^2-x^2+xy+2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{3y^2+3xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{3y}{x-y}\)
Rút gọn:
A= ( a+b+c) \(^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)