Tìm m để y = \(\frac{x+1}{x-1}\), y = mx+1 cắt 2 điểm phân biệt
Tìm m để y = \(\frac{x^2-2x+4}{x-1}\) , y = mx+2-2m cắt 2 điểm phân biệt
, Cho hàm số y=x-1/x^2+mx+4. Tìm m để đồ thị hàm số có 2 đường tiện cận 13, tìm m để(C):y= mx^3-x^2-2x+8m cắt Ox tại 3 điểm phân biệt có Hoành độ âm 14,cho (C) :y= x^3+(m+2) x+1 d:y= 2x-1 Tìm m để d cắt C tại 1 điểm duy nhất có Hoành độ dương 15, tìm m để phương trình -x^4+2x^2+3x+2m=0 có 3 nghiệm phân biệt
12, Cho hàm số y=x-1/x^2+mx+4. Tìm m để đồ thị hàm số có 2 đường tiện cận 13, tìm m để(C):y= mx^3-x^2-2x+8m cắt Ox tại 3 điểm phân biệt có Hoành độ âm 14,cho (C) :y= x^3+(m+2) x+1 d:y= 2x-1 Tìm m để d cắt C tại 1 điểm duy nhất có Hoành độ dương 15, tìm m để phương trình -x^4+2x^2+3x+2m=0 có 3 nghiệm phân biệt
cho (C) y=x^3+3x^2+mx-1 và d y= x+m+2 tìm m để d cắt (C) tại 3 điểm phân biệt ABC sao cho BC=4 , biết xA=1
Cho hàm số \(y=\frac{mx^2+x+m}{x-1}\left(C\right)\). Tìm m để (C) cắt Ox tại hai điểm phân biệt có hoành độ dương
Phương trình hoành độ giao điểm của (C) và Ox :
\(\frac{mx^2+x+m}{x-1}=0\Leftrightarrow mx^2+x+m=0\left(1\right)\), \(x\ne1\)
Đặt \(f\left(x\right)=mx^2+x+m\)
(C) cắt Ox tại 2 điểm phân biệt có hoành độ dương
\(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt khác 1
\(\Leftrightarrow\begin{cases}m\ne0\\\Delta=1-4m^2>0\\f\left(1\right)=1+2m\ne0\end{cases}\) \(\Leftrightarrow\begin{cases}m\ne0\\-\frac{1}{2}< m< \frac{1}{2}\end{cases}\)
Vậy với \(\begin{cases}m\ne0\\-\frac{1}{2}< m< \frac{1}{2}\end{cases}\) thì điều kiện bài toán thỏa mãn
Cho (P): y=x^2
(d): y=mx-m+1
Tìm m để (P) cắt (d) tại 2 điểm phân biệt thỏa mãn /x1/ + /x2/ = 4
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=mx-m+1\Rightarrow x^2-mx+m-1=0\)
\(\Delta=b^2-4ac=\left(-m\right)^2-4.1.\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
Vì\(\left(m-2\right)^2\ge0\forall m\Rightarrow\Delta\ge0\forall m\)
Để (P) cắt (d) tại 2 điểm phân biệt\(\Leftrightarrow\Delta>\Leftrightarrow\left(m-2\right)^2>0\Leftrightarrow m-2\ne0\Leftrightarrow m\ne2\)
Áp dụng hệ thức vi-ét ta có:
\(x_1+x_2=\frac{-b}{a}=m;x_1.x_2=\frac{c}{a}=m-1\)
Theo bài ra ta có:
\(|x_1|+|x_2|=4\)
\(\Rightarrow\left(|x_1|+|x|_2\right)^2=16\)
\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2+2|x_1.x_2|=16\)
\(\Rightarrow m^2-2\left(m-1\right)+2|m-1|=16\)
\(\Rightarrow m^2-2m+2+2|m-1|=16\)
\(\Rightarrow m^2-2m+2|m-1|=14\left(1\right)\)
\(+\)Nếu \(m\ge1\)Khi đó PT (1) có dạng:
\(m^2-2m+2+2m-2=16\Rightarrow m^2=16\Rightarrow\orbr{\begin{cases}m=4\left(TM\right)\\m=-4\left(L\right)\end{cases}}\)
\(+\)Nếu\(m< 1\)Khi đó PT (1) có dạng:
\(m^2-2m+2+2-2m=16\Rightarrow m^2-4m-12=0\Rightarrow\orbr{\begin{cases}m=6\left(L\right)\\m=-2\left(TM\right)\end{cases}}\)
Vậy...
Cho (P): \(y=x^2\) và (d): \(y=mx-m+1\)
a. Tìm m để (d) cắt (P) tại 2 điểm phân biệt.
b. Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) thỏa mãn
\(A=\dfrac{2x_1x_2}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}+2016\) đạt max, min
Làm câu (b) giúp em với ạ em cảm ơn nhiều
a (tóm tắt lại): Phương trình hoành độ giao điểm của (P) và (d):
\(x^2=mx-m+1\)
\(\Leftrightarrow x^2-mx+m-1=0\left(1\right)\)
Để (d) cắt (P) tại 2 điểm phân biệt thì phương trình (1) phải có 2 nghiệm phân biệt. Do đó \(\Delta>0\Leftrightarrow m\ne2\).
b) \(\left(1\right)\Leftrightarrow\left(x-1\right)\left(x+1\right)-m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=m-1\end{matrix}\right.\)
Do đó phương trình (1) có 2 nghiệm là x=1 và x=m-1. Mặt khác phương trình (1) cũng có 2 nghiệm phân biệt là x1, x2 và vai trò của x1, x2 trong biểu thức A là như nhau nên ta giả sử \(x_1=1;x_2=m-1\left(m\ne2\right)\)
Từ đây ta có:
\(A=\dfrac{2.1.\left(m-1\right)}{1^2+\left(m-1\right)^2+2\left[1+1.\left(m-1\right)\right]}\)
\(=\dfrac{2\left(m-1\right)}{1+\left(m-1\right)^2+2+2\left(m-1\right)}\)
\(=\dfrac{2\left(m-1\right)}{1+\left(m^2-2m+1\right)+2+2m-2}=2.\dfrac{m-1}{m^2+2}\)
\(\Rightarrow A\left(m^2+2\right)=2\left(m-1\right)\)
\(\Leftrightarrow Am^2-2m+2\left(A+1\right)=0\left(2\right)\)
Coi phương trình (2) là phương trình bậc 2 tham số A ẩn x, ta có:
\(\Delta'\left(2\right)=1^2-2A\left(A+1\right)=-2\left(A^2+A\right)+1=-2\left(A+\dfrac{1}{2}\right)^2+\dfrac{3}{2}\)
Để phương trình (2) có nghiệm thì \(\Delta'\left(2\right)\ge0\Rightarrow-2\left(A+\dfrac{1}{2}\right)^2+\dfrac{3}{2}\ge0\)
\(\Leftrightarrow\left(A+\dfrac{1}{2}\right)^2\le\dfrac{3}{4}\)
\(\Leftrightarrow-\dfrac{\sqrt{3}}{2}\le A+\dfrac{1}{2}\le\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow-\dfrac{\sqrt{3}+1}{2}\le A\le\dfrac{\sqrt{3}-1}{2}\)
Để phương trình (2) có nghiệm kép thì: \(\Delta'\left(2\right)=0\Rightarrow m=\dfrac{1}{A}\)
\(MinA=-\dfrac{\sqrt{3}+1}{2}\Leftrightarrow\Delta'\left(2\right)=0\Leftrightarrow m=\dfrac{1}{A}\dfrac{1}{-\dfrac{\sqrt{3}+1}{2}}=1-\sqrt{3}\)
\(MaxA=\dfrac{\sqrt{3}-1}{2}\Leftrightarrow\Delta'\left(2\right)=0\Leftrightarrow m=\dfrac{1}{A}=\dfrac{1}{\dfrac{\sqrt{3}-1}{2}}=\sqrt{3}+1\)
Tìm tập hợp tất cả các giá trị của m để đồ thị hàm số y = 2 x + m x + 1 cắt đường thẳng y=1-x tại hai điểm phân biệt
A. ( - ∞ ; 2 ]
B. ( - ∞ ; 2 )
C. ( - ∞ ; - 2 )
D. ( 2 ; + ∞ )
cho (d) y=mx-m+2 tìm m để (d) cắt (p) y=1/2 x^2 tại 2 điểm phân biệt a, b có tung độ lần lượt y1^2+y2^2=2p