Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê minh trang
Xem chi tiết
ngô ngọc hưng
Xem chi tiết
hoang pham huy
Xem chi tiết
ngô ngọc hưng
Xem chi tiết
Vũ Trịnh Hoài Nam
Xem chi tiết
Ngô Thị Ánh Vân
21 tháng 4 2016 lúc 22:09

Phương trình hoành độ giao điểm của (C) và Ox :

\(\frac{mx^2+x+m}{x-1}=0\Leftrightarrow mx^2+x+m=0\left(1\right)\)\(x\ne1\)

Đặt \(f\left(x\right)=mx^2+x+m\)

(C) cắt Ox tại 2 điểm phân biệt có hoành độ dương

\(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt khác 1

\(\Leftrightarrow\begin{cases}m\ne0\\\Delta=1-4m^2>0\\f\left(1\right)=1+2m\ne0\end{cases}\)  \(\Leftrightarrow\begin{cases}m\ne0\\-\frac{1}{2}< m< \frac{1}{2}\end{cases}\)

Vậy với \(\begin{cases}m\ne0\\-\frac{1}{2}< m< \frac{1}{2}\end{cases}\) thì điều kiện bài toán thỏa mãn

♡Trần Lệ Băng♡
Xem chi tiết
💋Bevis💋
24 tháng 7 2019 lúc 23:52

Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=mx-m+1\Rightarrow x^2-mx+m-1=0\)

\(\Delta=b^2-4ac=\left(-m\right)^2-4.1.\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

\(\left(m-2\right)^2\ge0\forall m\Rightarrow\Delta\ge0\forall m\)

Để (P) cắt (d) tại 2 điểm phân biệt\(\Leftrightarrow\Delta>\Leftrightarrow\left(m-2\right)^2>0\Leftrightarrow m-2\ne0\Leftrightarrow m\ne2\)

Áp dụng hệ thức vi-ét ta có:

\(x_1+x_2=\frac{-b}{a}=m;x_1.x_2=\frac{c}{a}=m-1\)

Theo bài ra ta có:

\(|x_1|+|x_2|=4\)

\(\Rightarrow\left(|x_1|+|x|_2\right)^2=16\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2+2|x_1.x_2|=16\)

\(\Rightarrow m^2-2\left(m-1\right)+2|m-1|=16\)

\(\Rightarrow m^2-2m+2+2|m-1|=16\)

\(\Rightarrow m^2-2m+2|m-1|=14\left(1\right)\)

\(+\)Nếu \(m\ge1\)Khi đó PT (1) có dạng:

\(m^2-2m+2+2m-2=16\Rightarrow m^2=16\Rightarrow\orbr{\begin{cases}m=4\left(TM\right)\\m=-4\left(L\right)\end{cases}}\)

\(+\)Nếu\(m< 1\)Khi đó PT (1) có dạng:

\(m^2-2m+2+2-2m=16\Rightarrow m^2-4m-12=0\Rightarrow\orbr{\begin{cases}m=6\left(L\right)\\m=-2\left(TM\right)\end{cases}}\)

Vậy...

Lê Gia Bảo
27 tháng 4 2020 lúc 15:22

I don't know

Khách vãng lai đã xóa
Hàng Tô Kiều Trang
Xem chi tiết
Trần Tuấn Hoàng
4 tháng 5 2023 lúc 22:58

a (tóm tắt lại): Phương trình hoành độ giao điểm của (P) và (d):

\(x^2=mx-m+1\)

\(\Leftrightarrow x^2-mx+m-1=0\left(1\right)\)

Để (d) cắt (P) tại 2 điểm phân biệt thì phương trình (1) phải có 2 nghiệm phân biệt. Do đó \(\Delta>0\Leftrightarrow m\ne2\).

b) \(\left(1\right)\Leftrightarrow\left(x-1\right)\left(x+1\right)-m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=m-1\end{matrix}\right.\)

Do đó phương trình (1) có 2 nghiệm là x=1 và x=m-1. Mặt khác phương trình (1) cũng có 2 nghiệm phân biệt là x1, xvà vai trò của x1, x2 trong biểu thức A là như nhau nên ta giả sử \(x_1=1;x_2=m-1\left(m\ne2\right)\)

Từ đây ta có:

\(A=\dfrac{2.1.\left(m-1\right)}{1^2+\left(m-1\right)^2+2\left[1+1.\left(m-1\right)\right]}\)

\(=\dfrac{2\left(m-1\right)}{1+\left(m-1\right)^2+2+2\left(m-1\right)}\)

\(=\dfrac{2\left(m-1\right)}{1+\left(m^2-2m+1\right)+2+2m-2}=2.\dfrac{m-1}{m^2+2}\)

\(\Rightarrow A\left(m^2+2\right)=2\left(m-1\right)\)

\(\Leftrightarrow Am^2-2m+2\left(A+1\right)=0\left(2\right)\)

Coi phương trình (2) là phương trình bậc 2 tham số A ẩn x, ta có:

\(\Delta'\left(2\right)=1^2-2A\left(A+1\right)=-2\left(A^2+A\right)+1=-2\left(A+\dfrac{1}{2}\right)^2+\dfrac{3}{2}\)

Để phương trình (2) có nghiệm thì \(\Delta'\left(2\right)\ge0\Rightarrow-2\left(A+\dfrac{1}{2}\right)^2+\dfrac{3}{2}\ge0\)

\(\Leftrightarrow\left(A+\dfrac{1}{2}\right)^2\le\dfrac{3}{4}\)

\(\Leftrightarrow-\dfrac{\sqrt{3}}{2}\le A+\dfrac{1}{2}\le\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow-\dfrac{\sqrt{3}+1}{2}\le A\le\dfrac{\sqrt{3}-1}{2}\)

Để phương trình (2) có nghiệm kép thì: \(\Delta'\left(2\right)=0\Rightarrow m=\dfrac{1}{A}\)

\(MinA=-\dfrac{\sqrt{3}+1}{2}\Leftrightarrow\Delta'\left(2\right)=0\Leftrightarrow m=\dfrac{1}{A}\dfrac{1}{-\dfrac{\sqrt{3}+1}{2}}=1-\sqrt{3}\)

\(MaxA=\dfrac{\sqrt{3}-1}{2}\Leftrightarrow\Delta'\left(2\right)=0\Leftrightarrow m=\dfrac{1}{A}=\dfrac{1}{\dfrac{\sqrt{3}-1}{2}}=\sqrt{3}+1\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 1 2019 lúc 6:09

nguyễn huy phúc
Xem chi tiết