cho A=\(\frac{n-5}{n+1}\) ( n thuộc z, n khác 1)
a. tìm n để A là số nguyên
b. tìm n để A tối giản
cho phân số A=n-5/n+1 (n thuộc Z ; n khác 1)
a) Tìm n để A có giá trị nguyên
b) Tìm n để A là phân số tối giản
a) Để A có giá trị nguyên thì \(n-5⋮n+1\)
\(\Leftrightarrow n+1-6⋮n+1\)
mà \(n+1⋮n+1\)
nên \(-6⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(-6\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
b)
Ta có: \(A=\dfrac{n-5}{n+1}\)
\(=\dfrac{n+1-6}{n+1}\)
\(=1-\dfrac{6}{n+1}\)
Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1
\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)
\(\Leftrightarrow n+1⋮̸6\)
\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)
\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)
Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản
Cho Biểu Thức : \(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\left(n\in Z,n\ne3\right)\)
a) Tìm n để A nhận giá trị nguyên
b) Tìm n để A là p/s tối giản
.
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
CHo A = \(\frac{n+1}{n-3}\)
n thuộc Z và n khác 3
a) Tìm n để A thuộc Z
b) Tìm n để A là phân số tối giản
a) A thuộc Z
=> n + 1 chia hết cho n - 3
n - 3 + 4 chia hết cho n - 3
4 chia hết cho n - 3
n - 3 thuộc U(4) = {-4 ; -2 ; -1 ; 1 ; 2; 4}
n thuộc {-1 ; 1 ; 2 ; 4 ; 5 ; 7}
Cho phân số \(A=\frac{n-5}{n+1}\) (n thuộc Z, n khác -1)
a, Tìm n để A có giá trị nguyên
b, Tìm n để A là phân số tối giản
\(A=\frac{n-5}{n+1}\)
Để A có giá trị nguyên
=> n-5 chia hết n+1
=> (n+1)-6 chia hết n+1
=> n+1 \(\in\)Ư (6) = \(\left(\text{±}1;\text{±}2;\text{±}3\text{;±}6\right)\)
Ta có bảng :
n+1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
Câu b tự làm
a, Để a nguyên thì n-5 chia hết cho n+1
suy ra n-1+6 chia hết cho n-1
Do n-1 chia hết cho n-1 nên 6 chia hết cho n-1
Mà n thuộc Z nên n-1 thuộc Z suy ra n-1 thuộc {1;-1;2;-2;3;-3;6;-6}
suy ra n thuộc {2;0;3;-1;4;-2;7;-5}
Mà n khác -1 nên n thuộc {2;0;3;4;-2;7;-5}
b, Gọi d là ước nguyên tố chung của n-5 và n+1
Suy ra n-5 chia hết cho d, n+1 chia hết cho d
Suy ra (n+1)-(n-5) chia hết cho d
suy ra n+1-n+5 chia hết cho d hay 6 chia hết cho d
Do d nguyên tố nên d thuộc {2;3}
Với d=2 thì n-5 và n+1 chia hết cho 2, n=2k+1(k thuộc Z)
Với d=3 thif n-5 và n+1 chia hết cho 3, n=3k+2(k thuộc Z)
Vây với n khác dạng 2k+1 và 3k+2 (k thuộc Z) thì A tối giản
Cho \(A=\frac{n-5}{n+1}\) ( n thuộc Z; n khác -1). Tìm n để A tối giản
cho phân số A= n-5/ n+1(n thuộc Z, n khác -1).
a) Tìm n để A có giá trị nguyên
b) Tìm n để A là phân số tối giản
Có : \(\frac{n-5}{n+1}=\frac{\left(n+1\right)-6}{n+1}=\frac{n+1}{n+1}-\frac{6}{n+1}=1-\frac{6}{n+1}\)
Để \(1-\frac{6}{n+1}\in Z\Leftrightarrow\frac{6}{n+1}\in Z\)
=> n + 1 thuộc Ư 6 => n + 1 = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 6 }
=> n = { - 7 ; - 4 ; - 3 ; - 2 ; 0 ; 1 ; 2 ; 5 }
A = n-5/n+1(với n thuộc z n khác -1)
a) Tìm n để A có giá trị là số nguyên
b)Tìm n để A là phân số tối giản
A=n-5/n+1 (n thuộc Z,n khác -1)
a) tìm n để A thuộc Z
b)Tìm n để a là phân số tối giản
AI GIA DUNG MINH TICK CHO
NHANH GIÚP VỚI MAI NỘP RỒI
a) Để A có giá trị nguyên => n - 5 chia hết n + 1
=> n + 1 - 6 chia hết n + 1
Vì n + 1 chia hết n + 1
=> 6 chia hết n + 1
=> n + 1 thuộc Ư(6) = {........}
=> .......................Còn lại bạn tự làm nha!
b) Giả sử tử và mẫu cùng chia hết cho số nguyên tố d
=> n - 5 chia hết d và n + 1 chia hết d
=> ( n+1) - ( n - 5) chia hết d
=> 6 chia hết d => d = 2 ; 3 ( vì d là số nguyên tố)
=> Có 2 trường hợp .....tự làm nha
a,n-5/n-1=((n-1)-4)/n-1
=1-(4/n-1)
=> n-1 thuộc Ư(4) =>n-1 =1, -1, 2, -2, 4, -4
=>.......
Quên, còn câu b nè:
Giả sử m là ước chung của cả tử và mẫu=> (n+1)-(n-5)=6 chia hết cho m
=> m thuộc 2 hoặc 3
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!