\(A=\frac{n-5}{n+1}\in Z\)
\(\Rightarrow n-5⋮n+1\)
\(\Rightarrow n+1-6⋮n+1\)
\(\Rightarrow6⋮n-1\)
\(\Rightarrow n-1\inƯ\left(6\right)\)
\(\Rightarrow n-1\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow n\in\left\{-5;-2;-1;0;2;3;4;7\right\}\)
Theo mình là :
\(\frac{n-5}{n+1}=\frac{n-6+1}{n+1}=\frac{-6}{n+1}\)
=> n + 1 \(\in\) Ư (-6) = {1;-1;2;-2;3;-3;6;-6}
=> n = { 0;-2;1;-3;2;-4;5;-7}
Mà n \(\ne\) 1 => n \(\in\) {0;-2;-3;2;-4;5;-7}
a. Để A là số nguyên=> n = {0;-3;2;-4;5;-7}
b Để A là tổi giản => n = -2