tìm x thuộc Z
a) \(\frac{x+3}{5}\in Z\)
b) \(\frac{7}{x-1}\in Z\)
c ) \(\frac{x+2}{x-1}\in Z\)
Tìm x thuộc Z
a) \(\frac{x+3}{5}\in Z\)
b) \(\frac{7}{x-1}\in Z\)
c) \(\frac{x+2}{x-1}\in Z\)
Tìm x thuộc Z
a, \(\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
b, \(\frac{2\left(\sqrt{2}-5\right)}{\sqrt{x}+1}\in Z\)
c, \(\frac{2\sqrt{x}+1}{3\sqrt{x}-1}\in Z\)
d, \(\frac{\sqrt{x}-2}{\sqrt{x}+2}\in Z\)
a) Gọi biểu thức trên là A.
\(ĐK:x\ge0\). Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{3}{\sqrt{x}+1}\) (1)
Để \(x\in Z\) thì \(\frac{3}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\sqrt{x}=\left\{0;-2;2;-4\right\}\) nhưng do không có căn bậc 2 của số âm nên:
\(\sqrt{x}\in\left\{0;2\right\}\Leftrightarrow x\in\left\{0;4\right\}\). Thay vào (1) để thử lại ta thấy chỉ có x = 0 thỏa mãn.
Vậy có 1 nghiệm là x = 0
b) Gọi biểu thức trên là B. ĐK: \(x\ge0\)
\(B=\frac{2\left(\sqrt{2}-5\right)}{\sqrt{x}+1}=\frac{2\sqrt{2}-10}{\sqrt{x}+1}=\frac{2\sqrt{2}}{\sqrt{x}+1}-\frac{10}{\sqrt{x}+1}\)
Để \(x\in Z\) thì \(\frac{10}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Đến đây bạn tiếp tục lập bảng tìm \(\sqrt{x}\) rồi bình phương tất cả các giá trị của \(\sqrt{x}\) để tìm được các giá trị của x nhé!. Nhưng lưu ý rằng làm xong phải thử lại bằng cách thế vào B để tìm nghiệm chính xác nhất nhé!
c) Tương tự như trên,bạn tự làm
d) Tương tự như câu a),bạn tự làm. Mình lười òi =))
Tìm \(x\in Z\)để:
A = \(\frac{2x}{x-2}\in Z\)
B = \(\frac{x}{3x+1}\in Z\)
C = \(\frac{x^2+2}{x+1}\in Z\)
D = \(\frac{x+1}{x^2+3}\in Z\)
a) ta có: \(A=\frac{2x}{x-2}=\frac{2x-4+4}{x-2}=\frac{2.\left(x-2\right)+4}{x-2}=\frac{2.\left(x-2\right)}{x-2}+\frac{4}{x-2}=2+\frac{4}{x-2}\)
Để \(A\inℤ\)
\(\Rightarrow\frac{4}{x-2}\inℤ\)
\(\Rightarrow4⋮x-2\Rightarrow x-2\inƯ_{\left(4\right)}=\left(4;-4;2;-2;1;-1\right)\)
nếu x -2 = 4 => x = 6 (TM)
x- 2= - 4 => x= - 2 (TM)
x- 2= 2 => x = 4 (TM)
x- 2 = -2 => x = 0 (TM)
x - 2 = 1 => x = 3 (TM)
x - 2 = -1 => x= 1 (TM)
KL: \(x\in\left(6;-2;4;0;3;1\right)\)
c) ta có: \(C=\frac{x^2+2}{x+1}=\frac{\left(x+1\right).\left(x-1\right)+3}{x+1}=\frac{\left(x+1\right).\left(x-1\right)}{x+1}+\frac{3}{x+1}\)\(=x-1+\frac{3}{x+1}\)
Để \(C\inℤ\)
\(\Rightarrow\frac{3}{x+1}\inℤ\)
\(\Rightarrow3⋮x+1\Rightarrow x+1\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu x + 1 = 3 => x = 2 (TM)
x + 1 = - 3 => x = -4 (TM)
x + 1 = 1 => x = 0
x + 1 = -1 => x = -2 (TM)
KL: \(x\in\left(2;-4;0;-2\right)\)
p/s
Cho \(A=\frac{3x+2}{x-3}\)và \(B=\frac{x^2+3x-7}{x+3}\)
a) Tính A khi x = 1 , x = 2 , x = \(\frac{5}{2}\)
b) Tìm x \(\in\)Z để A \(\in\)Z
c) Tìm \(x\in Z\)để B \(\in\)Z
d) Tìm \(x\in Z\)để A và B cùng \(\in Z\)
a, Với x = 1 thì \(A=\frac{3x+2}{x-3}=\frac{3\cdot1+2}{1-3}=\frac{5}{-2}=\frac{-5}{2}\)
Với x = 2 thì \(A=\frac{3x+2}{x-3}=\frac{3\cdot2+2}{2-3}=\frac{8}{-1}=-\frac{8}{1}=-8\)
Với x =\(\frac{5}{2}\)thì : \(A=\frac{3x+2}{x-3}=\frac{3\cdot\frac{5}{2}+2}{\frac{5}{2}-3}=\frac{\frac{15}{2}+2}{\frac{5}{2}-3}=\frac{\frac{19}{2}}{-\frac{1}{2}}=\frac{19}{2}\cdot(-2)=\frac{19}{1}\cdot(-1)=-19\)
b, Ta có : \(\frac{3x+2}{x-3}=\frac{3x-9+11}{x-3}=\frac{3(x-3)+11}{x-3}=3+\frac{11}{x-3}\)
\(\Leftrightarrow11⋮x-3\Leftrightarrow x-3\inƯ(11)=\left\{\pm1;\pm11\right\}\)
Lập bảng :
x - 3 | 1 | -1 | 11 | -11 |
x | 4 | 2 | 14 | -8 |
c,Để suy nghĩ đã
Làm tiếp :v
c, \(B=\frac{x^2+3x-7}{x+3}=\frac{x(x+3)-7}{x+3}=x-\frac{7}{x+3}\)
\(\Rightarrow7⋮x+3\Leftrightarrow x+3\inƯ(7)=\left\{\pm1;\pm7\right\}\)
Lập bảng :
x + 3 | 1 | -1 | 7 | -7 |
x | -2 | -4 | 4 | -10 |
d, Tương tự
a) Tìm x thuộc Z để :
\(x+5\) chia hết \(x^2-4\)
b) Tìm x thuộc Z để cho :
1)\(\frac{x^2-x}{x+1}\in Z\)
2)\(\frac{-x^2+2x-5}{x-2}\in Z\)
a) Tìm x thuộc Z để :
\(x+5\) chia hết \(x^2-4\)
b) Tìm x thuộc Z để cho :
1)\(\frac{x^2-x}{x+1}\in Z\)
2)\(\frac{-x^2+2x-5}{x-2}\in Z\)
a) Tìm x thuộc Z để :
\(x+5\) chia hết \(x^2-4\)
b) Tìm x thuộc Z để cho :
1)\(\frac{x^2-x}{x+1}\in Z\)
2)\(\frac{-x^2+2x-5}{x-2}\in Z\)
1. cho các số thực x,y thỏa mãn \(x+y\in Z;x^2+y^2\in Z;x^4+y^4\in Z\). Cmr: \(x^3+y^3\in Z\)
2. giair pt và hpt : a) \(\frac{x^3+14}{2+x}=2\sqrt{\frac{x^3-3x+4}{x+1}}+3\)
b) \(\left\{{}\begin{matrix}2x^3+3x^2y=5\\y^3+6xy^2=7\end{matrix}\right.\)
3. Cmr: \(\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^2}\ge\frac{3}{1+abc}\)
Bài 2:
b) Với y = 0 thì vt của pt thứ 2 = 0 => loại.
Xét y khác 0:
Nhân pt thứ nhất với \(\frac{7}{5}\) rồi trừ đi pt thứ 2 thu được:
\(\frac{14}{5}x^3+\frac{21}{5}x^2y-y^3-6xy^2=0\)
\(\Leftrightarrow\frac{1}{5}\left(x-y\right)\left(14x^2+35xy+5y^2\right)=0\)
Với x = y, thay vào pt thứ 2:
\(7x^3=7\Rightarrow x=1\Rightarrow y=1\)
Với \(14x^2+35xy+5y^2=0\)
\(\Leftrightarrow14\left(\frac{x}{y}\right)^2+35\left(\frac{x}{y}\right)+5=0\)
Đặt \(\frac{x}{y}=t\) suy ra: \(14t^2+35t+5=0\Rightarrow\left[{}\begin{matrix}t=\frac{-35+3\sqrt{105}}{28}\\t=\frac{-35-3\sqrt{105}}{28}\end{matrix}\right.\)
Nghiệm xấu quá, chị tự thay vào giải nốt :D. Nhớ check xem em có tính nhầm chỗ nào ko:D
3/ Sửa phân thức thứ 3 thành: \(\frac{1}{1+c^3}\).
Quy đồng lên ta cần chứng minh: \(\frac{\Sigma_{cyc}\left(1+a^3\right)\left(1+b^3\right)}{\left(1+a^3\right)\left(1+b^3\right)\left(1+c^3\right)}\ge\frac{3}{1+abc}\)
\(\Leftrightarrow abc\left(a^3b^3+b^3c^3+c^3a^3\right)+2abc\left(a^3+b^3+c^3\right)-3a^3b^3c^3-\left[a^3+b^3+c^3-3abc+2\left(a^3b^3+b^3c^3+c^3a^3\right)\right]\ge0\)Đến đây chắc là đổi biến sang pqr rồi làm nốt ạ! Hơi trâu bò tí, cách khác em chưa nghĩ ra.
Bài 1:
Ta thấy:
\(\left\{\begin{matrix} x^2+y^2=(x+y)^2-2xy\in\mathbb{Z}\\ x+y\in\mathbb{Z}\end{matrix}\right.\Rightarrow 2xy\in\mathbb{Z}(1)\)
\(\left\{\begin{matrix} x^4+y^4=(x^2+y^2)^2-2x^2y^2\in\mathbb{Z}\\ x^2+y^2\in\mathbb{Z}\end{matrix}\right.\Rightarrow 2x^2y^2\in\mathbb{Z}(2)\)
Từ $(1);(2)$. Đặt $2xy=a$ thì $2x^2y^2=2(xy)^2=\frac{a^2}{2}$. Để $2x^2y^2$ nguyên thì $a^2\vdots 2$ hay $a$ chẵn. Suy ra $xy=\frac{a}{2}\in\mathbb{Z}$
Từ đây ta thấy $x^3+y^3=(x+y)^3-3xy(x+y)$ là số nguyên do $x+y,xy$ đều nguyên.
Ta có đpcm.
Cho C = \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}.\)
a) rút gọn C
b) tìm x\(\in\)Z để C \(\in\)Z
c) tìm x để C > \(\frac{1}{2}\)