Choa,b,c>0 cmr:
a^8+b^8+c^8>=(abc)^3.(1/a +1/b +1/c)
choA+B+C=0 CMR:a^3+b^3+c^3=3abc cmr:a^2+b^2+c^2=2(a^4+b^4+c^4)
\(choa,b,c>0.cmr:\dfrac{a^8}{b^4}+\dfrac{b^8}{c^4}+\dfrac{c^8}{a^4}\ge ab^3+bc^3+ca^3\)
Mí bạn zúp mình nhá ^-^.Choa,b,c>0.CMR
(1-a/b+c)(1-b/c+a)(1-c/a+b) nhỏ hơn hoặc bằng \(\frac{1}{8}\)
giúp mình với mai mình nộp rồi
a^4+b^4+c^4>=abc(a+b+c)
a^8+b^8+c^8 >=1/a+1/b+1/c(với a,b,c>0)
Áp dụng bất đẳng thức $x^2+y^2+z^2 \geq xy+yz+zx$ có:
$a^4+b^4+c^4 \geq (ab)^2+(bc)^2+(ca)^2 \geq abbc+bcca+abca=abc(a+b+c)$
b, đề đúng: $\dfrac{a^8+b^8+c^8}{(abc)^3} \geq \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
Có \dfrac{a^8+b^8+c^8}{(abc)^3} \geq \dfrac{(ab)^4+(bc)^4+(ca)^4}{(abc)^3} \geq \dfrac{(abbc)^2+(bcca)^2+(abca)^2}{(abc)^3}$
$\geq \dfrac{a^2+b^2+c^2}{abc} \geq \dfrac{ab+bc+ca}{abc}= \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
Cả hai phần dấu $=$ xảy ra $⇔a=b=c$
cho a,b,c>0 CMR:\(\frac{a^8+b^8+c^8}{\left(abc\right)^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Ta áp dụng bất đẳng thức phụ sau đây liên tiếp: \(x^2+y^2+z^2\ge xy+yz+zx\leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0.\)
Khi đó \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+a^2b^2c^4+a^4b^2c^2\)
\(=a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ca\right)\).
Vậy ta có \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ca\right)\to\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{ab+bc+ca}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Choa, b, c là độ dài 3 cạnh 1 tam giác. CMR:
1, \(abc\ge\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\)
2, \(\dfrac{1}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\sqrt{abc\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)}\)
Bài 1 : Áp dụng BĐT trong tam giác ta có :
\(\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2-\left(b-c\right)^2\le a^2\\b^2-\left(c-a\right)^2\le b^2\\c^2-\left(a-b\right)^2\le c^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(a+b-c\right)\left(a-b+c\right)\le a^2\\\left(b-c+a\right)\left(b+c-a\right)\le b^2\\\left(c-a+b\right)\left(c+a-b\right)\le c^2\end{matrix}\right.\)
Nhân từng vế BĐT ta được :
\(\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\) ( đpcm )
Bài 2 : Theo BĐT Cô - si ta có :
\(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{matrix}\right.\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
\(\Rightarrow\dfrac{1}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge abc\) (1)
Theo câu 1 ta lại có :
\(abc\ge\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\)
\(\Leftrightarrow abc\ge\sqrt{abc\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{1}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\sqrt{abc\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)}\)
1) Ta có: (a + b - c)(a - b + c) ≤ \(\dfrac{1}{4}\)(a + b - c + a - b + c)2 = \(\dfrac{1}{4}\)(2a)2 = a2
cmtt rồi nhân theo vế: a2b2c2 ≥ (a + b - c)2(a - b + c)2(- a + b + c)2
=> đpcm
Choa;b;c>0;abc=1.CMR:
(b+c)(c+a)(a+b)>=(a+1)(b+1)(c+1)
Cho a,b,c là các số thực thỏa mãn a < 0 , b < 0 và a + b + c =0 . Chứng minh rằng : (a-1)/(a^2+8) + (b-1)/(b^2+8) + (c-1)/(c^2+8) > -3/8
cho a,b,c>0. chứng minh: \(\frac{a^8+b^8+c^8}{a^3+b^3+c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
hình như dấu + dưới mẫu là nhân mới đúng