Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thang
Xem chi tiết
Phạm Lợi
Xem chi tiết
Nguyen Vo
Xem chi tiết
nguyễn văn nhật nam
Xem chi tiết
ntkhai0708
22 tháng 3 2021 lúc 12:54

Áp dụng bất đẳng thức $x^2+y^2+z^2 \geq xy+yz+zx$ có:

$a^4+b^4+c^4 \geq (ab)^2+(bc)^2+(ca)^2 \geq abbc+bcca+abca=abc(a+b+c)$

b, đề đúng: $\dfrac{a^8+b^8+c^8}{(abc)^3} \geq \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$

Có \dfrac{a^8+b^8+c^8}{(abc)^3} \geq \dfrac{(ab)^4+(bc)^4+(ca)^4}{(abc)^3} \geq \dfrac{(abbc)^2+(bcca)^2+(abca)^2}{(abc)^3}$

$\geq \dfrac{a^2+b^2+c^2}{abc} \geq \dfrac{ab+bc+ca}{abc}= \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
Cả hai phần dấu $=$ xảy ra $⇔a=b=c$

Ngu Người
Xem chi tiết
Thầy Giáo Toán
28 tháng 8 2015 lúc 7:39

Ta áp dụng bất đẳng thức phụ sau đây liên tiếp: \(x^2+y^2+z^2\ge xy+yz+zx\leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0.\)

Khi đó    \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+a^2b^2c^4+a^4b^2c^2\)

\(=a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ca\right)\)

Vậy ta có \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ca\right)\to\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{ab+bc+ca}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Nguyễn Thị Bình Yên
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
18 tháng 1 2019 lúc 9:02

Bài 1 : Áp dụng BĐT trong tam giác ta có :

\(\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2-\left(b-c\right)^2\le a^2\\b^2-\left(c-a\right)^2\le b^2\\c^2-\left(a-b\right)^2\le c^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(a+b-c\right)\left(a-b+c\right)\le a^2\\\left(b-c+a\right)\left(b+c-a\right)\le b^2\\\left(c-a+b\right)\left(c+a-b\right)\le c^2\end{matrix}\right.\)

Nhân từng vế BĐT ta được :

\(\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\) ( đpcm )

Bài 2 : Theo BĐT Cô - si ta có :

\(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{matrix}\right.\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

\(\Rightarrow\dfrac{1}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge abc\) (1)

Theo câu 1 ta lại có :

\(abc\ge\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\)

\(\Leftrightarrow abc\ge\sqrt{abc\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{1}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\sqrt{abc\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)}\)

Nguyễn Thị Bình Yên
5 tháng 12 2018 lúc 13:20

@Akai Haruma

Eren
6 tháng 12 2018 lúc 23:28

1) Ta có: (a + b - c)(a - b + c) ≤ \(\dfrac{1}{4}\)(a + b - c + a - b + c)2 = \(\dfrac{1}{4}\)(2a)2 = a2

cmtt rồi nhân theo vế: a2b2c2 ≥ (a + b - c)2(a - b + c)2(- a + b + c)2

=> đpcm

Trung Nguyen
Xem chi tiết
vũ văn tùng
Xem chi tiết
Hà Lê
Xem chi tiết
Thắng Nguyễn
12 tháng 7 2017 lúc 18:57

hình như dấu + dưới mẫu là nhân mới đúng