Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
q duc
Xem chi tiết
q duc
27 tháng 8 2023 lúc 12:15

giúp mình với

hồng chuyên
Xem chi tiết
ngonhuminh
18 tháng 7 2017 lúc 20:02

\(\left\{{}\begin{matrix}\sqrt{x}=1.\sqrt{x}\\\sqrt{2-x}=1.\sqrt{2-x}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=1\\b=1\\x=\sqrt{x}\\y=\sqrt{y}\end{matrix}\right.\)

áp vào \(\left(1.\sqrt{x}+1.\sqrt{2-x}\right)^2\le\left(1^2+1^2\right)\left(\sqrt{x}^2+\sqrt{2-x}^2\right)=2.\left(x+2-x\right)=2.2=4\)\(\left(1.\sqrt{x}+1.\sqrt{2-x}\right)^2\le4\Rightarrow\left(1.\sqrt{x}+1.\sqrt{2-x}\right)\le2\)

tại đâu bạn tự tìm cho vui

Pham Thi Thanh Thuy
Xem chi tiết
Thắng Nguyễn
11 tháng 7 2017 lúc 23:34

\(BDT\Leftrightarrow\sqrt[3]{\frac{abc}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}+\sqrt[3]{\frac{xyz}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\le1\)

Áp dụng BĐT AM-GM ta có: 

\(\sqrt[3]{\frac{abc}{(a+x)(b+y)(c+z)}}\le\frac{\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}}{3}\)

\(\sqrt[3]{\frac{xyz}{(a+x)(b+y)(c+z)}}\le\frac{\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}}{3}\)

\(\Rightarrow VT\le\frac{\frac{x+a}{x+a}+\frac{b+y}{b+y}+\frac{c+z}{c+z}}{3}=1\)

Xảy ra khi a=b=c và x=y=z

Lầy Văn Lội
11 tháng 7 2017 lúc 23:37

Áp dụng BĐT AM-Gm:

\(\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}\ge3\sqrt[3]{\frac{abc}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\)

\(\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}\ge3\sqrt[3]{\frac{xyz}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\)

Cộng 2 BĐT trên theo vế:

\(3\ge3.\frac{\sqrt[3]{abc}+\sqrt[3]{xyz}}{\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\)

\(\Leftrightarrow\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\ge\sqrt[3]{abc}+\sqrt[3]{xyz}\)(đpcm)

Dấu = xảy ra khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Bá đạo sever là tao
12 tháng 7 2017 lúc 18:08

Bunhiacopski thực ra là Holder nhé nên mình dùng Holder thay Bunhia :v

\(\left(a+x\right)\left(b+y\right)\left(c+z\right)\ge\left(\sqrt[3]{abc}+\sqrt[3]{xyz}\right)^3\)

\(\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\ge\sqrt[3]{abc}+\sqrt[3]{xyz}\)

Xảy ra khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Họ Và Tên
Xem chi tiết
Thầy Kim
17 tháng 10 2021 lúc 23:33

hình như bạn ghi sai đề phải k ạ 

 

Nguyễn Minh Sơn
28 tháng 10 2021 lúc 22:26

Sai đề :D

Hùng Hoàng
Xem chi tiết
Lionel Messi
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 15:44

Đk:\(3\le x\le7\)

Có \(\left(\sqrt{x-3}+\sqrt{7-x}\right)^2=4+2\sqrt{\left(x-3\right)\left(7-x\right)}\ge4;\forall3\le x\le7\)

\(\Leftrightarrow\sqrt{x-3}+\sqrt{7-x}\ge2\) (I)

Có \(6x-7-x^2=2-\left(x^2-6x+9\right)=2-\left(x-3\right)^2\le2\) (II)

Từ (I) và (II) => Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{\left(x-3\right)\left(7-x\right)}=0\\x-3=0\end{matrix}\right.\)\(\Rightarrow x=3\) (tm)

Vậy...

Nguyễn Việt Lâm
5 tháng 7 2021 lúc 15:46

ĐKXĐ: \(3\le x\le7\)

Ta có:

\(VT=\sqrt{x-3}+\sqrt{7-x}\ge\sqrt{x-3+7-x}=2\)

\(VP=2-\left(x-3\right)^2\le2\)

\(\Rightarrow VT\ge VP\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)=0\\\left(x-3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy pt có nghiệm duy nhất \(x=3\)

An Thy
5 tháng 7 2021 lúc 15:54

ĐKXĐ: \(3\le x\le7,6x-7-x^2\ge0\)

\(\sqrt{x-3}+\sqrt{7-x}=6x-7-x^2\)

Ta có: \(-x^2+6x-7=-\left(x^2-6x+9\right)+2=-\left(x-3\right)^2+2\le2\)

Ta có: \(\left(\sqrt{x-3}+\sqrt{7-x}\right)^2=x-3+7-x+2\sqrt{\left(x-3\right)\left(7-x\right)}\)

\(=4+2\sqrt{\left(x-3\right)\left(7-x\right)}\ge4\Rightarrow\sqrt{x-3}+\sqrt{7-x}\ge2\)

\(\Rightarrow\left\{{}\begin{matrix}-x^2+6x-7=2\\\sqrt{x-3}+\sqrt{7-x}=2\end{matrix}\right.\Rightarrow x=3\)

Vậy pt có nghiệm là 3

 

 

 

I lay my love on you
Xem chi tiết
dinh huong
Xem chi tiết
Trần Ngọc Thiên Kim
11 tháng 1 2022 lúc 19:33
Not biếtmdnhdhd
Khách vãng lai đã xóa
Trần Bảo Minh
11 tháng 1 2022 lúc 20:33

Hummmm

Khách vãng lai đã xóa
Hà Nguyễn Bảo Trâm
12 tháng 1 2022 lúc 19:48

Dạ em không biết ạ,tại vì em mới học lớp 4 ạ,em xin lỗi ạ

Khách vãng lai đã xóa
Trương Trần Duy Tân
Xem chi tiết
Hoàng Lê Bảo Ngọc
26 tháng 5 2016 lúc 22:36

\(x=\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}\)(ĐK :\(x\ge1\))

\(\Leftrightarrow x-\sqrt{1-\frac{1}{x}}=\sqrt{x-\frac{1}{x}}\)

\(\Leftrightarrow x^2+1-\frac{1}{x}-2x\sqrt{1-\frac{1}{x}}=x-\frac{1}{x}\)

\(\Leftrightarrow x^2-x+1-2x\sqrt{1-\frac{1}{x}}=0\)

\(\Leftrightarrow\left(x^2-x\right)-2\sqrt{x^2-x}+1=0\)

\(\Leftrightarrow\left(\sqrt{x^2-x}-1\right)^2=0\)

\(\Rightarrow\sqrt{x^2-x}=1\Leftrightarrow x^2-x-1=0\)

\(\Rightarrow x=\frac{1+\sqrt{5}}{2}\)(nhận) hoặc \(x=\frac{1-\sqrt{5}}{2}\)(loại)

Vậy tập nghiệm của phương trình : \(S=\left\{\frac{1+\sqrt{5}}{2}\right\}\)

Về hướng giải bài bằng bất đẳng thức Cosi mình chưa nghĩa ra :))