cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. biết BD=15cm, CD= 20cm.tính BH,HC
Cho tam giác ABC vuông tại A,phân giác AD,đường cao AH,biết BD=15cm ,CD=20cm.Tính BH,CH
\(BC=BD+CD=15+20=35\left(cm\right)\)
Xét tam giác \(ABC\)phân giác \(AD\):
\(\frac{AB}{BD}=\frac{AC}{CD}\)(tính chất đường phân giác trong tam giác)
\(\Leftrightarrow\frac{AB}{15}=\frac{AC}{20}\Leftrightarrow AB=\frac{3}{4}AC\).
Xét tam giác \(ABC\)vuông tại \(A\):
\(BC^2=AB^2+AC^2\)(định lí Pythagore)
\(\Leftrightarrow35^2=\left(\frac{3}{4}AC\right)^2+AC^2\Leftrightarrow AC^2=784\Leftrightarrow AC=28\left(cm\right)\)
\(AC^2=CH.BC\Leftrightarrow CH=\frac{AC^2}{BC}=\frac{28^2}{35}=22,4\left(cm\right)\)
\(BH=35-22,4=12,6\left(cm\right)\)
Cho tam giác ABC vuông tại A,phân giác AD,đường cao AH,biết BD=15cm ,CD=20cm.Tính AB,AC,BC,AH,BH,CH
Cho tam giác ABC vuông tại A,phân giác AD,đường cao AH,biết BD=15cm ,CD=20cm.Tính AB,AC,BC,AH,BH,CH
cho tam giác abc vuông tại a, có ad là phân giác, ah là đường cao.bd=15cm, cd=20cm.tính hb,hc
△ABC có AD là đường phân giác
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{DB}{DC}=\dfrac{15}{20}=\dfrac{3}{4}\\ \Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{9}{16}\\ \Rightarrow\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{BC^2}{25}=\dfrac{\left(15+20\right)^2}{25}=49\\ \Rightarrow AB=\sqrt{49.9}=21\left(cm\right)\\ AC=\sqrt{49.16}=28\left(cm\right)\)
△ABC vuông tại A có \(AH\perp BC\)
\(\Rightarrow AH.BC=AB.AC\\ \Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{21.28}{35}=16,8\left(cm\right)\)
△ABC vuông tại A có \(AH\perp BC\)
\(\Rightarrow AB^2=AH.HB\\ \Rightarrow HB=\dfrac{AB^2}{AH}=\dfrac{21^2}{16,8}=26,25\left(cm\right)\\ HC=BC-HB=15+20-26,25=8,75\left(cm\right)\)
Cho tam giác ABC vuông tại A đường cao AH,phân giác AD,BD=15cm,CD=20cm.Tính HB,HD,BC chu vi và diện tích tam giác ABC
Bài 2.Cho tam giác ABC vuông ở A, phân giác AD đường cao AH. Biết BD = 15cm, CD = 20cm. Tính độdài các đoạn thẳng BH, HC.
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{9}{16}\)
\(\Leftrightarrow BH=\dfrac{9}{16}CH\)
Ta có: BH+CH=35
\(\Leftrightarrow CH\cdot\dfrac{25}{16}=35\)
\(\Leftrightarrow CH=22.4\left(cm\right)\)
\(\Leftrightarrow BH=\dfrac{9}{16}\cdot22.4=12.6\left(cm\right)\)
cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết BD=15cm, CD=20cm. Tính BH,CH?
BC=15+20=35cm
BD/CD=3/4
=>AB/AC=3/4
BH/CH=(AB/AC)^2=9/16
=>BH/9=CH/16=35/25=1,4
=>BH=12,6cm; CH=22,4cm
a, Cho tam giác ABC vuông tại A có AB =3/5 BC . Đường cao AH =12cm . Tính chu vi tam giác ABC .
b, Cho tam giác ABC vuông tại A có đường cao AH , phân giác AD . Biết BD=15cm ,DC=20cm.Tính AH,AD
GIÚP MIK . THANKS
a, Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow BC^2=\left(\frac{3}{5}BC\right)^2+AC^2\)
\(\Leftrightarrow AC^2=\frac{16}{25}BC^2\Leftrightarrow AC=\frac{4}{5}BC\)
* Áp dụng hệ thức :
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{144}=\frac{1}{\frac{9}{25}BC^2}+\frac{1}{\frac{16}{25}BC^2}\)
\(\Leftrightarrow\frac{1}{144}=\frac{\frac{16}{25}BC^2+\frac{9}{25}BC^2}{\frac{16}{25}BC^2.\frac{9}{25}BC^2}\Rightarrow144BC^2=\frac{144}{625}BC^4\)
\(\Leftrightarrow\frac{144}{625}BC^2-144=0\Leftrightarrow BC^2=144.\frac{625}{144}=625\Leftrightarrow BC=25\)cm
\(\Rightarrow AB=\frac{3}{5}BC=\frac{3}{5}.25=\frac{75}{5}=15\)cm
\(\Rightarrow AC=\frac{4}{5}BC=\frac{4}{5}.25=\frac{100}{5}=20\)
Chu vi tam giác là : \(P_{ABC}=AB+BC+AB=15+20+25=60\)cm2
b, Vì AD là phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)
Lại có : \(BC=BD+DC=15+20=35\)cm
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(BC^2=AC^2+AB^2=AC^2+\left(\frac{3}{4}AC\right)^2\)
\(\Rightarrow\frac{25}{16}AC^2=1225\Leftrightarrow AC^2=\frac{16.1225}{25}=784\Leftrightarrow AC=28\)cm
\(\Rightarrow AB=\frac{3}{4}.28=21\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AH^2}=\frac{AC^2+AB^2}{AB^2AC^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{784+441}{345744}\Leftrightarrow1225AH^2=345744\Leftrightarrow AH^2=\frac{7056}{25}\Leftrightarrow AH=\frac{84}{5}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=\frac{63}{5}\)cm
\(\Rightarrow HD=BD-BH=15-\frac{63}{5}=\frac{12}{5}\)cm
Áp dụng định lí Pytago cho tam giác AHD vuông tại H
\(AD^2=AH^2+HD^2=\left(\frac{84}{5}\right)^2+\left(\frac{12}{5}\right)^2=288\Rightarrow AD=12\sqrt{2}\)cm
Cho tam giác ABC vuông tại A , phân giác AD , đường cao AH . Biết BD = 15 cm , CD = 20 cm . Tính BH , HC
Lời giải:
Theo tính chất tia phân giác:
$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.BC$
$\Rightarrow \frac{BH}{CH}=(\frac{AB}{AC})^2=\frac{9}{16}$
Mà $BH+CH=BC=BD+CD=15+20=35$ (cm)
Do đó:
$BH=35:(9+16).9=12,6$ (cm)
$CH=35:(9+16).16=22,4$ (cm)