2)CMR biểu thức -4x2-4x-2 luôn luôn âm với mọi giá trị của x
2)CMR biểu thức 4x2-4x-2 luôn luôn âm với mọi giá trị của x
Đề bài sai! bạn thay x= 2 vào xem âm ko.
CMR các biểu thức sau luôn có giá trị âm với mọi x
a) -x2 - 2x - 8
b) -x2 - 5x - 11
c) -4x2 - 4x - 2
d) -9x2 + 6x - 7
Lời giải:
a. $-x^2-2x-8=-7-(x^2+2x+1)=-7-(x+1)^2$
Vì $(x+1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên
$-x^2-2x-8=-7-(x+1)^2\leq -7< 0$ với mọi $x\in\mathbb{R}$
Vậy biểu thức luôn nhận giá trị âm với mọi $x$
b.
$-x^2-5x-11=-11+2,5^2-(x^2+5x+2,5^2)< -11+3^2-(x+2,5)^2$
$=-2-(x+2,5)^2\leq -2< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
c.
$-4x^2-4x-2=-1-(4x^2+4x+1)=-1-(2x+1)^2\leq -1< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
d.
$-9x^2+6x-7=-6-(9x^2-6x+1)=-6-(3x-1)^2\leq -6< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
Bài 6.CMR các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) – 9x^2 + 12x – 15
b) –2x^2+4x-9
c) xy-x^ 2 -y 2 -1
d) 17- x^ 2 - 5y^ 2 + 2xy -12y
a) \(-9x^2+12x-15=-\left(9x^2-12x+4\right)-11=-\left(3x-2\right)^2-11\le11< 0\)
b) \(-2x^2+4x-9=-2\left(x^2-2x+1\right)-7=-2\left(x-1\right)^2-7\le-7< 0\)
c) \(xy-x^2-y^2-1=-\dfrac{1}{2}\left(2x^2+2y^2-2xy+2\right)=-\dfrac{1}{2}\left[\left(x-y\right)^2+x^2+y^2+2\right]< 0\)
2)CMR biểu thức 4x2-28x+51 luôn luôn dương với mọi giá trị của x
Ta có: \(4x^2-28x+51=\left(2x\right)^2-2\cdot2x\cdot7+49+2\)
\(=\left(2x-7\right)^2+2\)(*)
Vì \(\left(2x-7\right)^2\ge0\) với mọi x
=> (*)\(\ge1\)
=>(*) luôn luôn dương với mọi x
ta có : \(4x^2-28x+51=\left(2x\right)^2-2.2x.7+7^2+51=\left(2x-7\right)^2+51\)
vì \(\left(2x-7\right)^2\ge0\) với mọi x
\(\Rightarrow\left(2x-7\right)^1+51>0\) với mọi x (đpcm)
Chứng minh giá trị của biểu thức A= 4x^2 - 3x + 1/4x luôn nhận giá trị không âm với mọi x>0
B1 CMR biểu thức sau luôn dương với mọi x
A=x^2-6x+15
B=4x^2+4x+7
B2 CMR biểu thức sau luôn âm với mọi x
A=-9x^2+6x-2021
B=-2x^2+2x-7
B3 Tìm x
A) (x-2)^2 - (3-4x)^2 +15x^2=0
B) (x-3)(x^2+3x+9)-x(x+2)(2-x)=0
Bài 1
\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)
\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)
Bài 2
\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)
CMR biểu thức sau luôn luôn dương ( hoặc âm ) với mọi giá trị của biến đã cho
-a2 + a -- 3
ta có \(-a^2+a-3=-\left(a^2-\frac{2a.1}{2}+\frac{1}{4}\right)+\frac{1}{4}-3\)
= \(-\left(a-\frac{1}{2}\right)^2-2.75\)
vì \(-\left(a-\frac{1}{2}\right)^2\le0\)với mọi a
nên biểu thức luôn âm
\(-a^2+a-3\)
\(=-\left(a^2-a+3\right)\)
\(=-\left(a^2-2.\frac{1}{2}a+\frac{1}{4}-\frac{1}{4}+3\right)\)
\(=-\left[\left(a-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
Vì \(\left(a-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(a-\frac{1}{2}\right)^2+\frac{11}{4}>0\)
\(\Rightarrow-\left[\left(a-\frac{1}{2}\right)^2+\frac{11}{4}\right]< 0\)
\(\Leftrightarrow-a^2+a-3< 0\)\(\left(đpcm\right)\)
Bài 4: Chứng minh rằng các biểu thức sau luôn luôn âm với mọi giá trị của biến a) M=-x² + 6x – 12 b) N= - 3x-x2 – 4 c)P =- 3x2+ 6x+20 d) Q= - 4x2 + 8x- 9y² – 6y – 35
CMR giá trị của các biểu thức sau không âm với mọi giá trị của biến x: A=x2 –3x+10 B = x2 – 5x + 2021 C = 4x2 + 4x + 5 D = 9x2 – 12x + 6
a: ta có: \(A=x^2-3x+10\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}>0\forall x\)
b: Ta có: \(B=x^2-5x+2021\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{8015}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{8015}{4}>0\forall x\)