Tìm GTLN
A=-x2 -x-y2 -3y +13
Tìm GTNN
A= 2a2+b2-2ab=10a+42
Tìm GTLN
A= -x2-y2+2x-6x+9
2) \(A=-x^2-y^2+2x-6y+9=-\left(x^2-2x+1\right)-\left(y^2+6y+9\right)+19=-\left(x-1\right)^2-\left(y+3\right)^2+19\)
\(maxA=19\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
Cho các số x, y thỏa mãn:
2x+3y=13. Tính GTNN của Q= x2 +y2
\(2x+3y=13\Rightarrow y=\dfrac{13-2x}{3}\)
\(Q=x^2+\left(\dfrac{13-2x}{3}\right)^2=\dfrac{13}{9}x^2-\dfrac{52}{9}x+\dfrac{169}{9}\)
\(Q=\dfrac{13}{9}\left(x-2\right)^2+13\ge13\)
\(Q_{min}=13\) khi \(\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
x+3y=1, tìm Min A=x2+y2
Tu x+3y=1nen x=1-3y Ta co A=(1-3y)2+y2=1-6y+9y2+y2 =10y2-6y+1 =10(y2-3/5y+1/10) =10(y2-2x3/10y+9/100+1/100) =10(y-3/10)2+1/10 Vi 10(y-3/10)2>=0 nen 10(y-3/10)2+1/10>=1/10
vay min A=1/10
1) x2-x-y2-y
2) x2 -y2 +x-y
3) 3x-3y+x2-y2
4) 5x-5y+x2-y2
5) x2-5x-y2-5y
6) x2-y2 +2x-2y
7) x2 -4y2+x+2y
8) x2-y2-2x-2y
9) x2 -4y2+2x+4y
1: \(x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
2: \(x^2-y^2+x-y\)
\(=\left(x^2-y^2\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+1\right)\)
3: \(3x-3y+x^2-y^2\)
\(=\left(3x-3y\right)+\left(x^2-y^2\right)\)
\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y+3\right)\)
4: \(5x-5y+x^2-y^2\)
\(=\left(5x-5y\right)+\left(x^2-y^2\right)\)
\(=5\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(5+x+y\right)\)
5: \(x^2-5x-y^2-5y\)
\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-5\right)\)
6: \(x^2-y^2+2x-2y\)
\(=\left(x^2-y^2\right)+\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)+2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+2\right)\)
7: \(x^2-4y^2+x+2y\)
\(=\left(x^2-4y^2\right)+\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y\right)+\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+1\right)\)
8: \(x^2-y^2-2x-2y\)
\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
9: \(x^2-4y^2+2x+4y\)
\(=\left(x^2-4y^2\right)+\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+2\right)\)
tìm các số nguyên x,y thỏa mãn y2+3y=x4+x2+18
\(\Leftrightarrow\)\(4y^2+12y=4x^4+4x^2+72\)
\(\Leftrightarrow\left(2y+3\right)^2=\left(2x^2+1\right)^2+80\)
\(\Leftrightarrow\left(2y+3\right)^2-\left(2x^2+1\right)^2=80\)
\(\Leftrightarrow\left(2y+3-2x^2-1\right)\left(2y+3+2x^2+1\right)=80\)
\(\Leftrightarrow\left(y-x^2+1\right)\left(y+x^2+2\right)=20\)
Do \(x,y\in Z\) => \(y+1-x^2;y+x^2+2\in Z\)
=>\(y+1-x^2;y+x^2+2\inƯ\left(20\right)\)
Kẻ bảng làm nốt nha.
C33.4:
Ta có: {x2+y2=1(1)21x+3y+48x2−48y2+28xy=69(2){x2+y2=1(1)21x+3y+48x2−48y2+28xy=69(2)
Từ pt (1) ta có: x2+y2=1⇒y2=1−x2x2+y2=1⇒y2=1−x2
Thay vào pt (2) ta được: 21x+3√1−x2+48x2−48(1−x2)+28x√1−x2−69=021x+31−x2+48x2−48(1−x2)+28x1−x2−69=0
⇔3√(1−x)(1+x)+28x√(1−x)(1+x)−21√(1−x)(1−x)−48(1−x2)−48(1−x2)=0⇔3(1−x)(1+x)+28x(1−x)(1+x)−21(1−x)(1−x)−48(1−x2)−48(1−x2)=0
⇔√1−x(3√1+x+28x√1+x−21√1−x−96(1+x)√1−x)=0⇔1−x(31+x+28x1+x−211−x−96(1+x)1−x)=0
⇔[√1−x=03√1+x+28x√1+x−21√1−x−96(1+x)√1−x=0⇔[1−x=031+x+28x1+x−211−x−96(1+x)1−x=0
+ Nếu √1−x=0⇔1−x=0⇔x=1⇒y=01−x=0⇔1−x=0⇔x=1⇒y=0
+Nếu 3√1+x+28x√1+x−21√1−x−96(1+x)√1−x=031+x+28x1+x−211−x−96(1+x)1−x=0
⇔3√1+x+28x√1+x=21√1−x+96(1+x)√1−x⇔31+x+28x1+x=211−x+96(1+x)1−x
⇔784x3+952x2+177x+9=−9216x3−13248x2+8775x+13689⇔784x3+952x2+177x+9=−9216x3−13248x2+8775x+13689
⇔10000x3+14200x2−8598x−13680=0⇔10000x3+14200x2−8598x−13680=0
⇔x=2425⇒y=725⇔x=2425⇒y=725
Thay x=2424;y=725x=2424;y=725 vào hệ pt ta thấy thoả mãn
x=2425;y=725x=2425;y=725 là 1 cặp nghiệm của hệ pt
Vậy hệ pt có nghiệm: (x;y)∈{(2425;725),(1;0)}(x;y)∈{(2425;725),(1;0)}
Đúng hay sai?
Đúng nhưng có người trả lời rồi,cop mần chi cho khổ :)
Cho (I): 4 x 2 + 4x – 9 y 2 + 1 = (2x + 1 + 3y)(2x + 1 – 3y)
(II): 5 x 2 – 10xy + 5 y 2 – 20 z 2 = 5(x + y + 2z)(x + y – 2z).
A. (I) đúng, (II) sai
B. (I) sai, (II) đúng
C. (I), (II) đều sai
D. (I), (II) đều đúng
Ta có
(I): 4 x 2 + 4 x – 9 y 2 + 1 = ( 4 x 2 + 4 x + 1 ) – 9 y 2 = ( 2 x + 1 ) 2 – ( 3 y ) 2
= (2x + 1 + 3y)(2x + 1 – 3y) nên (I) đúng
Và
(II):
5 x 2 – 10 x y + 5 y 2 – 20 z 2 = 5 ( x 2 – 2 x y + y 2 – 4 z 2 ) = 5 [ ( x – y ) 2 – ( 2 z ) 2 ]
= 5(x – y – 2z)(x – y + 2z) nên (II) sai
Đáp án cần chọn là: A
tìm giá trị lớn nhất của biểu thức
D=x2+y2 với x+3y=10
giúp mình với đang cần gấp
x + 3y = 10 <=> x = 10 - 3y thay vào D ta được:
D = (10 - 3y)2 + y2 = 100 - 60y + 9y2 + y2
D = 10y2 - 60y + 100 = 10(y2 - 6y + 10)
D = 10(y2 -2y3 + 9 + 1) = 10[(y - 3)2 + 1]
D = 10(y - 3)2 + 10 \(\ge\)10
Dấu "=" xảy ra khi: y - 3 = 0 <=> y = 3
=> x = 10 - 3y = 10 - 3.3= 1
Vậy gtnn D = 10 khi x = 1, y = 3
tìm giá trị nhỏ nhất hay lớn nhất vậy bạn?
1) Giai he pt:
a) x2 = 3x - y va y2 = 3y - x b) x + y + xy = 5 va x2 + y2 =5
a. Trừ vế theo vế \(\left(1\right)\) cho \(\left(2\right)\) ta được \(x^2-y^2=4x-4y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=4-y\end{matrix}\right.\)
TH1: \(x=y\)
Phương trình \(\left(1\right)\) tương đương:
\(x^2=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=2\end{matrix}\right.\)
TH2: \(x=4-y\)
Phương trình \(\left(2\right)\) tương đương:
\(y^2=4y-4\)
\(\Leftrightarrow y^2-4y+4=0\)
\(\Leftrightarrow\left(y-2\right)^2=0\)
\(\Leftrightarrow y=2\)
\(\Rightarrow x=2\)
Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)
b. \(\left\{{}\begin{matrix}x+y+xy=5\\x^2+y^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-2xy=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-10+2\left(x+y\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2+2\left(x+y\right)-15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y+5\right)\left(x+y-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left[{}\begin{matrix}x+y=-5\\x+y=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\Leftrightarrow\) vô nghiệm
TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
chứng tỏ
a) x2 + 8y2 =( x +2y ) ( x2- 2xy +4y2)
b) (x-y) (x2+xy+y2 ) -3xy (x-y) =( x-y)3
c) (x-3y) (x2 +3xy +9y2 ) - ( 3y +x ) ( 9y2 -3xy + x2) = -54y3
cíu em vớii
\(a,VP=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\\ =\left(x+2y\right)\left[x^2-x.2y+\left(2y\right)^2\right]\\ =x^3+\left(2y\right)^3=x^3+8y^3=VT\left(đpcm\right)\\ b,VT=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\left(x-y\right)\\ =x^3-y^3-3xy\left(x-y\right)\\ =x^3-3x^2y+3xy^2-y^3\\ =\left(x-y\right)^3=VP\left(đpcm\right)\)
\(c,VT=\left(x-3y\right)\left(x^2+3xy+9y^2\right)-\left(3y+x\right)\left(9y^2-3xy+x^2\right)\\ =\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]-\left(x+3y\right).\left[x^2-x.3y+\left(3y\right)^2\right]\\ =x^3-27y^3-\left(x^3+27y^3\right)\\ =-54y^3=VP\left(đpcm\right)\)