Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dung Vu
Xem chi tiết
Dung Vu
Xem chi tiết
Dung Vu
Xem chi tiết
nguyễn thị hương giang
26 tháng 11 2021 lúc 14:40

\(B=\left(\dfrac{a-b}{a^2+ab}-\dfrac{a}{b^2+ab}\right):\left(\dfrac{b^3}{a^3-ab^2}+\dfrac{1}{a+b}\right)\)

    \(=\left(\dfrac{a-b}{a\left(a+b\right)}-\dfrac{a}{b\left(a+b\right)}\right):\left(\dfrac{b^3}{a\left(a-b\right)\left(a+b\right)}+\dfrac{1}{a+b}\right)\)

    \(=\dfrac{b\left(a-b\right)-a^2}{ab\left(a+b\right)}:\dfrac{b^3+a\left(a-b\right)}{a\left(a-b\right)\left(a+b\right)}\)

    \(=\dfrac{ab-b^2-a^2}{ab\left(a+b\right)}\cdot\dfrac{a\left(a-b\right)\left(a+b\right)}{a^2-ab+b^3}\)

    \(=\dfrac{\left(a-b\right)\left(ab-b^2-a^2\right)}{b\left(a^2-ab+b^3\right)}\)

    \(=\dfrac{-\left(a-b\right)\left(a^2-ab+b^2\right)}{b\left(a^2-ab+b^3\right)}\)

Đề lỗi rồi chứ mình ko rút gọn đc nữa

Lizy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 lúc 22:38

Trước hết theo BĐT Schur bậc 3 ta có:

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)

\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)

Áp dụng (1):

\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Nguyễn Thiều Công Thành
Xem chi tiết
Tuyển Trần Thị
31 tháng 10 2017 lúc 6:13

đúng rồi

Nguyễn Văn Hòa
1 tháng 11 2017 lúc 19:05

 chó điên

Tú Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 6:08

a/ Với mọi số thực ta luôn có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Lại có do a;b;c là ba cạnh của 1 tam giác nên theo BĐT tam giác ta có:

\(a+b>c\Rightarrow ac+bc>c^2\)

\(a+c>b\Rightarrow ab+bc>b^2\)

\(b+c>a\Rightarrow ab+ac>a^2\)

Cộng vế với vế: \(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 6:11

b/

Do a;b;c là ba cạnh của tam giác nên các nhân tử vế phải đều dương

Ta có:

\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)

Tương tự: \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)

Nhân vế với vế:

\(a^2b^2c^2\ge\left(a+b-c\right)^2\left(b+c-a\right)^2\left(a+c-b\right)^2\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 6:14

\(VT=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)

\(=4a^2b^2-\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)\)

\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)

\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)

\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)

Mặt khác theo BĐT tam giác ta có:

\(\left\{{}\begin{matrix}a+b>c\\\left|a-b\right|< c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2>c^2\\\left(a-b\right)^2< c^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2-c^2>0\\c^2-\left(a-b\right)^2>0\end{matrix}\right.\)

\(\Rightarrow VT>0\)

Khách vãng lai đã xóa
Eren
Xem chi tiết
soyeon_Tiểubàng giải
18 tháng 6 2017 lúc 15:50

Ta có:

(a + b + c)2 = 0 => a2 + b2 + c2 + 2(ab + bc + ca) = 0

=> a2 + b2 + c2 = -2(ab + bc + ca)

=> (a2 + b2 + c2)2 = 4(ab + bc + ca)2

=> a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 4[a2b2 + b2c2 + c2a2 + 2(ab2c + bc2a + ca2b)

=> a4 + b4 + c4 = 2(a2b2 + b2c2 + c2a2) + 8abc(a + b + c)

=> a4 + b4 + c4 = 2(a2b2 + b2c2 + c2a2) (vì a + b + c = 0) (1)

Có: \(\left\{{}\begin{matrix}2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2a^2bc+2abc^2\right)\\2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2\left(2\right)\\a^4+b^4+c^4=\dfrac{\left(a^2+b^2+c^2\right)}{2}\left(3\right)\end{matrix}\right.\)

Từ (1); (2) và (3) ta có đpcm

bach nhac lam
Xem chi tiết
tthnew
11 tháng 11 2019 lúc 20:40

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

Khách vãng lai đã xóa
tthnew
6 tháng 7 2020 lúc 7:23

Cách khác câu 2:Đặt \(\left(a,b,c\right)=\left(a^3,b^3,c^3\right)\)

Có: \(VT-VP=\frac{1}{6} \sum\, \left( 3\,{a}^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc \right) \left( a -b \right) ^{2} \left( a+b-c \right) ^{2}+\frac{2}{3} \sum \,{a}^{2}{b}^{2} \left( a -b \right) ^{2} \geq 0\)

Bất đẳng thức trên vẫn đúng trong trường hợp $a,b,c$ là các số thực.

Thật vậy ta chỉ cần chứng minh$:$

\(\frac{1}{6}\sum \left( 3\,{a}^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc \right) \left( a -b \right) ^{2} \left( a+b-c \right) ^{2} \geq 0\)

Chú ý \(\sum\left(a-b\right)\left(a+b-c\right)=0\)

Ta đưa về chứng minh: \(\sum (3\,{a}^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc) \geq 0 \,\,\,\,\,\,(1)\)

\(\sum \left( 3\,{a}^{2}+2\,ab+4\,ac+2\,bc+3\,{c}^{2} \right) \left( 3\,{a} ^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc \right) \geq 0 \,\,\,\,(2)\)

$(1)$ dễ chứng minh bằng tam thức bậc $2$.

Chứng minh $(2):$

$$\text{VT} = {\frac {196\, \left( a+b+c \right) ^{4}}{27}} + \sum{\frac { \left( a-b \right) ^{2} \left( 47\,a+26\,c+47\,b \right) ^{2}
}{2538}}+\sum {\frac {328\,{c}^{2} \left( a-b \right) ^{2}}{141}} \geq 0$$

Xong.

bach nhac lam
19 tháng 10 2019 lúc 17:51

Vũ Minh Tuấn, @Nk>↑@, Nguyễn Văn Đạt, Băng Băng 2k6, tth, Nguyễn Thị Diễm Quỳnh, Lê Thị Thục Hiền,

Aki Tsuki, @Trần Thanh Phương, @Nguyễn Việt Lâm, @Akai Haruma

giúp e vs ạ! cần gấp! thanks nhiều!

Khách vãng lai đã xóa
Tuấn
Xem chi tiết
phung thi  khanh hop
1 tháng 2 2016 lúc 6:28

đây là toán lớp 1 à bạn  , lớp 1 chưa học số mũ đâu nhé