Cho x+y=z. Tìm min x^2 + y^2
Cho x;y;z>0 và x+y+z<3 .Tìm Min= 1/(x^2+y^2+z^2) + 9/(xyz)
ý em là bài này hả ?
Cho các số dương x,y,z thoã mãn x+y+z=3 Tìm GTNN của 2(x^3+y^3+z^3)-(x^2+y^2+z^2)+2...
bài làm
ta có : x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-... bạn tự chứng minh nha, khai triển vế phải ra là xong :D)
sau đó áp dụng điều kiện x+y+z=3 rồi thay vào biểu thức ban đầu ta có
BT= 5(x^2+y^2+z^2)-6(xy+yz+zx) + 8xyz +3
= 8(x^2+y^2+z^2)-3(x+y+z)^2 + 8xyz +3
sau đó bạn áp dụng BDT xyz>=(x+y-z)(z+x-y)(y+z-x) sau đó thế x+y+z=3 và khai triển ra ta được
xyz>=(3-2z)(3-2y)(3-2z)=27-18(x+y+z)+1... -8xyz
thay x+y+z=3 ta được:
9xyz >=12(xy+yz+zx)-27
>> BT + xyz >= 8(x^2+y^2+z^2)-27+3+ 12(xy+yz+zx)-27=2(x^2+y^2+z^2)+6(x+y+z)^...
lại có 3(x^2+y^2+z^2)>=(x+y+z)^2 ( BDT Bunhiacopxki) >> (x^2+y^2+z^2)>=3
27xyz<=(x+y+z)^3>> xyz<=1
vậy BT + 1>= BT +xyz >= 6+ 54-51 <> BT >=8. ĐT khi x=y=z=1
Cho x+y=z. Tìm min M = x^2 + y^2
→Tìm max:
Ta có bđt sau với mọi x,y: xy ≤ (x² + y²)/2 (đẳng thức xảy ra khi x = y)
kết hợp với giả thiết: x² + y² = 4 + xy ≤ 4 + (x² + y²)/2
=> P ≤ 4 + P/2
<=> P ≤ 8
Max P = 8 xảy ra khi x = y và x² + y² - xy = 4 <=> x = y = 2 hoặc x = y = - 2 •
→ Tìm min:
P = x² + y² = 4 + xy
+ Nếu xy ≥ 0 thì P ≥ 4
+ Nếu xy < 0: không mất tính tổng quát giả sử x > 0; y < 0
để tiện cho việc cm, đặt y = - z với z > 0
Ta có: P/4 = (x² + y²)/4 = (x² + y²)/(x² + y² - xy)
= 1 + xy/(x² + y² + xy) = 1 - zx/(x² + z² + zx)
mặt khác:
x² + z² ≥ 2zx
=> x² + z² + zx ≥ 3zx
=> zx/(x² + z² + zx) ≤ 1/3 (vì zx > 0)
=> P/4 = 1 - zx/(x² + z² + zx) ≥ 1 - 1/3 = 2/3
=> P ≥ 8/3
Min P = 8/3 xảy ra khi z = x = - y; x² + y² - xy = 4 <=> x = 2/√3; y = -2/√3 hoặc x = -2/√3; y = 2/√3
a) Cho 3 số không âm x, y, z thỏa mãn: \(x^2+y^2+z^2=1\) . Tìm min: \(M=x+y+z-3\)
b) Cho 2 số dương x, y thỏa mãn: \(\left(\sqrt{x}+1\right).\left(\sqrt{y}+1\right)\ge4\) .Tìm min: \(P=\frac{x^2}{y}+\frac{y^2}{x}\)
I :
a) Tìm min của : A=(x-1)^2+(x-2)^2
b) Tìm max của : B= 8x-4x^2-3
II: tìm x,y,z thỏa mãn
x^2+y^2+z^2=4x-2y+6z-14
help me
I:
a: \(=x^2-2x+1+x^2-4x+4\)
\(=2x^2-6x+5\)
\(=2\left(x^2-3x+\dfrac{5}{2}\right)\)
\(=2\left(x^2-3x+\dfrac{9}{4}+\dfrac{1}{4}\right)\)
\(=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\)
Dấu = xảy ra khi x=3/2
b: \(=-4\left(x^2-2x+\dfrac{3}{4}\right)\)
\(=-4\left(x^2-2x+1-\dfrac{1}{4}\right)=-4\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1
I : Tìm min : A=(x-1)^2+(x-2)^2
Tìm max : B=x^2+y^2+z^2=4x-2y+6z-14
\(A=x^2-2x+1+x^2-4x+4\)
\(=2x^2-6x+5\)
\(=2\left(x^2-3x+\dfrac{5}{2}\right)\)
\(=2\left(x^2-3x+\dfrac{9}{4}+\dfrac{1}{4}\right)\)
\(=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\)
Dấu = xảy ra khi x=3/2
Cho\(\hept{\begin{cases}xyz=1\\x,y,z>0\end{cases}}\)Tìm Min A=\(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\)
Cho x,y,z>0.Tìm Min A=\(\frac{x}{y+2z}+\frac{y}{z+2x}+\frac{z}{x+2y}\)
Cho \(\left\{{}\begin{matrix}0\le x,y,z\le3\\x+y+z=6\end{matrix}\right.\)
Tìm Min, Max của:
\(P=x^2+y^2+z^2+xyz\)
@Akai Haruma
#Max: Giả sử z=max{x, y, z} \(\Rightarrow z\ge2\). Ta chứng minh BĐT sau:
\(x^2+y^2+z^2+xyz\le\dfrac{\left(x+y\right)^2}{2}+z^2+\dfrac{\left(x+y\right)^2z}{4}\)
\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{4}\left(z-2\right)\ge0\) ( đúng ) (*)
Do đó \(VT\le\dfrac{\left(6-z\right)^2}{2}+z^2+\dfrac{z\left(6-z\right)^2}{4}=f\left(z\right)\) với \(z\in\left[2;3\right]\)
\(f'\left(z\right)=\left(6-z\right).\left(-1\right)+2z+\dfrac{1}{4}.\left[\left(6-z\right)^2+z.2\left(z-6\right)\right]\)
\(=\dfrac{3}{4}z^2-3z+3=\dfrac{3}{4}\left(z-2\right)^2\ge0\).Suy ra \(f\left(z\right)\le f\left(3\right)=\dfrac{81}{4}\)
Dấu = đạt được tại \(x=y=\dfrac{3}{2},z=3\) và các hoán vị
#Min: Để ý (*), ta giả sử z=Min{x, y, z} thì \(z\le2\). Do đó ta lại có
\(VT\ge f\left(z\right)\) với \(z\in\left[0;2\right]\). Vì f(z) vẫn đồng biến / R nên min sẽ đạt được tại z=0 và bằng 18
Dấu = đạt được tại x=y=3, z=0 và các hoán vị
Cho x,y>0 và x+y=1.Tìm Min P=(x^2+1/y^2)(y^2+1/x^2)
áp dụng cô si => \(x^2+\frac{1}{y^2}\ge\frac{2x}{y}\)
=> \(y^2+\frac{1}{x^2}\ge\frac{2y}{x}̸\)
=> \(\left(y^2+\frac{1}{x^2}\right)\)\(\left(x^2+\frac{1}{y^2}\right)\)\(\ge4\)
dấu '=' xảy ra khi và chi khi \(\hept{\begin{cases}y^2=\frac{1}{x^2}\\x^{2=\frac{1}{y^2}}\\xy=1\end{cases}}\)\(\Leftrightarrow x=y=1\)