giải phương trình: (x^2)-x+căn(x+1)-8=0
giải phương trình: (x^2)-x+căn(x+1)-8=0
Bạn xem bài này nhé:
http://olm.vn/hoi-dap/question/604325.html
x = 3
giải phương trình (x^2)-x+căn(x+1)-8=0
\(x^2-x+\sqrt{x+1}-8=0.\)(1) ĐK: x >= -1
Đặt: \(t=\sqrt{x+1}\mid t\ge0\)
\(x=t^2-1\)\(x^2=\left(t^2-1\right)^2=t^4-2t^2+1\)Thay vào (1):
(1) \(\Leftrightarrow t^4-3t^2+t-6=0\)
\(\Leftrightarrow t^4-4t^2+t^2-2t+3t-6=0\)
\(\Leftrightarrow\left(t-2\right)\left(t^3+2t^2+t+3\right)=0\)(*)
Vì t>=0 nên t3 + 2t2 + t + 3 >0 với mọi t
(*) \(\Leftrightarrow t-2=0\Rightarrow t=2\)
\(\sqrt{x+1}=2\Rightarrow x=3\)(TMĐK >= -1)
Vậy, PT có nghiệm duy nhất x = 3.
giải phương trình: x-( căn 2 của x-8 )- (căn 2 của 8)*3 +1=0
\(x-\sqrt{x-8}-3.\sqrt{8}+1=0\)Đúng vậy không? vì cách viết của bạn con 8 đầu có thể nằm ngoài căn
cách giải đề thi chuyên toán 10 năm 2014-2015
giải các phương trình sau
1, căn 3x+1 - căn 6-x +3x2-14x-8 bằng 0
2, căn x+3 +căn mũ 3 5x+3 bằng 4
3, căn mũ 3 x-3 +căn 3x+1 bằng 2-x
Giải phương trình sau: 3+căn(2x-3)=x
(Căn x+1)(2 căn x-3)-2x=-4
Căn (2x+1)- x+1= 0
a: \(3+\sqrt{2x-3}=x\)
=>\(\sqrt{2x-3}=x-3\)
=>x>=3 và 2x-3=(x-3)^2
=>x>=3 và x^2-6x+9=2x-3
=>x>=3 và x^2-8x+12=0
=>x>=3 và (x-2)(x-6)=0
=>x>=3 và \(x\in\left\{2;6\right\}\)
=>x=6
b: \(\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)-2x=-4\)
=>\(2x-3\sqrt{x}+2\sqrt{x}-3-2x=-4\)
=>\(-\sqrt{x}-3=-4\)
=>\(-\sqrt{x}=-1\)
=>căn x=1
=>x=1(nhận)
c: \(\sqrt{2x+1}-x+1=0\)
=>\(\sqrt{2x+1}=x-1\)
=>x>=1 và (x-1)^2=2x+1
=>x>=1 và x^2-2x+1=2x+1
=>x>=1 và x^2-4x=0
=>x(x-4)=0 và x>=1
=>x=4
Giải bất phương trình A) căn 5x-1< x+1 B) căn x^2 +2x+8 b< x+2 C) căn 2x^2 +4
Giải phương trình x^2-3x+5-2(1+1/x). căn (x-1)=0
Giải phương trình
a) căn (x + 1) - căn (x - 2) = 1
b) căn (4 - 2 căn 3) - ( x2 - 2x căn 3 + 3) = 0
\(ĐK:x\ge2\)
\(\sqrt{x+1}=\sqrt{x-2}+1\)
\(\Leftrightarrow x+1=x-1+2\sqrt{x-2}\)
\(\Leftrightarrow2\sqrt{x-2}=2\Leftrightarrow x=3\)
1.Giải bất phương trình: 3* căn[1-(3/x)] + căn[3x-(27/x)] >= x
2. Tìm m để bất phương trình [(10-m)x^2-2(m+2)x+1]/[căn(x^2-2x+2] < 0 có nghiệm
Cảm ơn nhiều những ai giúp em ạ!