\(A=\sqrt{8-2\sqrt[]{15}}-\sqrt{8+2\sqrt[]{15}}\)
rút gọn hộ mik vs
4)\(\sqrt{8+2\sqrt{15}}\) -\(\sqrt{8-2\sqrt{15}}\)
5)\(\sqrt{5+2\sqrt{6}}\) +\(\sqrt{8-2\sqrt{15}}\)
4: \(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}\)
\(=2\sqrt{3}\)
4) \(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{5}+\sqrt{3}-\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}\)
5) \(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{2}+\sqrt{3}+\sqrt{5}-\sqrt{3}=\sqrt{2}+\sqrt{5}\)
a,\(\sqrt{8+2\sqrt{15}}\) -\(\sqrt{6+2\sqrt{15}}\)
b, \(\sqrt{17-2\sqrt{72}}-\sqrt{19+2\sqrt{18}}\)
c, \(\sqrt{8-2\sqrt{7}}+\sqrt{8+2\sqrt{7}}\)
d, \(\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}\)
e, \(\sqrt{10-2\sqrt{21}}-\sqrt{9-2\sqrt{14}}\)
\(a,\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{3}+\sqrt{5}-\left(\sqrt{5}+1\right)=\sqrt{3}-1\\ b,=3-2\sqrt{2}-\left(3\sqrt{2}+1\right)=2-5\sqrt{2}\\ c,=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\\ d,=\sqrt{11}+1-\left(\sqrt{11}-1\right)=2\\ e,=\sqrt{7}-\sqrt{3}-\left(\sqrt{7}-\sqrt{2}\right)=\sqrt{2}-\sqrt{3}\)
tính
a.\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
b. \(\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}\)
\(a,\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\\ =\sqrt{\sqrt{5^2}+2\sqrt{5}.\sqrt{3}+\sqrt{3^2}}-\sqrt{\sqrt{5^2}-2\sqrt{5}.\sqrt{3}+\sqrt{3^2}}\\ =\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\\ =\left|\sqrt{5}+\sqrt{3}\right|-\left|\sqrt{5}-\sqrt{3}\right|\\ =\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}\\ =2\sqrt{3}\)
\(b,\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}\\ =\sqrt{\sqrt{2^2}+2.\sqrt{3}.\sqrt{2}+\sqrt{3^2}}+\sqrt{\sqrt{2^2}-2.\sqrt{3}.\sqrt{2}+\sqrt{3^2}}\\ =\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\\ =\left|\sqrt{2}+\sqrt{3}\right|+\left|\sqrt{2}-\sqrt{3}\right|\\ =\sqrt{2}+\sqrt{3}-\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
a) \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
\(=\sqrt{5-2\cdot\sqrt{5\cdot3}+3}-\sqrt{5+2\cdot\sqrt{5\cdot3}+1}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
\(=-2\sqrt{3}\)
b. \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{3}+3}-\sqrt{3-2\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{2}\)
\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{3}+\sqrt{5}-\sqrt{5}+\sqrt{3}=2\sqrt{3}\)
\(=\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}=2\sqrt{3}\)
\(\sqrt{8-2\sqrt{15}}+\sqrt{8+2\sqrt{15}}\)
\(\sqrt{8-2\sqrt{15}}+\sqrt{8+2\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(=\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}\)
\(=\sqrt{5}+\sqrt{5}=2\sqrt{5}\)
1) Rút gọn
\(A=\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\)
2) So sánh: \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\)và \(\sqrt{3}\)
1) \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)
\(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0
=> A=3
2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)
\(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)
\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)
\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)
\(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)
Mà A >0
=> A=2
Mà 4>3
=> \(\sqrt{4}=2>\sqrt{3}\)
=> \(A>\sqrt{3}\)
Rút gọn biểu thức:\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
A=\(\sqrt{5-2\sqrt{3}.\sqrt{5}+3}-\sqrt{5+2\sqrt{5}.\sqrt{3}+3}\)
A=\(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
A=\(\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
A=\(-2\sqrt{3}\)
\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
\(A=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(A=\left|\sqrt{5}-\sqrt{3}\right|-\sqrt{5}-\sqrt{3}\)
\(A=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
\(A=-2\sqrt{3}\)
2) \(\dfrac{\sqrt{108}}{\sqrt{3}}\)
13) \(\sqrt{8-2\sqrt{15}}\)- \(\sqrt{23-4\sqrt{15}}\)
14) ( 4+ \(\sqrt{15}\) ) (\(\sqrt{10}\)- \(\sqrt{6}\) ) \(\sqrt{4-\sqrt{15}}\)
2: \(\dfrac{\sqrt{108}}{\sqrt{3}}=6\)
13: \(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}\)
\(=\sqrt{5}-\sqrt{3}-2\sqrt{5}+\sqrt{3}\)
\(=-\sqrt{5}\)
14: \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
=2
12.
\(\dfrac{\sqrt{108}}{\sqrt{3}}=\dfrac{\sqrt{36}.\sqrt{3}}{\sqrt{3}}=\sqrt{36}=6\)
13.
\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{3}-\sqrt{5}\right|-\left|2\sqrt{5}-\sqrt{3}\right|\)
\(=\sqrt{5}-\sqrt{3}-2\sqrt{5}+\sqrt{3}\)
\(=-\sqrt{5}\)
14.
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\)
\(=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{16-15}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=2\)
Rút gọn biểu thức sau :\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
\(A=\sqrt{8-2\cdot\sqrt{3}\cdot\sqrt{5}}-\sqrt{8+2\cdot\sqrt{3}\cdot\sqrt{5}}\)
\(A=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(A=\left|\sqrt{5}-\sqrt{3}\right|-\left|\sqrt{5}+\sqrt{3}\right|\)
\(A=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
\(A=-2\sqrt{3}\)
Cách khác:
\(A^2=\left(\sqrt{8-2\sqrt{15}}\right)^2-2.\sqrt{8-2\sqrt{15}}.\sqrt{8+2\sqrt{15}}+\left(\sqrt{8+2\sqrt{15}}\right)^2\)
\(A^2=8-2\sqrt{15}-2.\sqrt{8^2-\left(2\sqrt{15}\right)^2}+8+2\sqrt{15}\)
\(A^2=16-2.2=12\)\(\Rightarrow\left[{}\begin{matrix}A=2\sqrt{3}\\A=-2\sqrt{3}\end{matrix}\right.\)
Vì \(\sqrt{8-2\sqrt{15}}< \sqrt{8+2\sqrt{15}}\) nên A<0 nên A=\(-2\sqrt{3}\)