Tính Sboc biết Sabc=450cm2
cho hình tam giác ABC .Trencanh AB lấy điểm N,trên cạnh AC lấy điểm M sao cho BN=1/4ABva AM =MC. Nối BM và CN cắt nhau tại o .Biết diện tích tam giác ANC BẰNG168 xăng-ti mét vuông.TÍNH Sabc,Sboc
Cho tam giác ABC I là trung điểm của AB Trên BC lấy điểm K sao cho BK =1/3 BC, AK và CI cắt nhau tại O Biết SABC =50cm2 Tính SABO,SBOC,SAOC
Chỉ mik vs ạ mik đang cần rất gấp
Cho tam giác ABC.Trên đáy BC lấy điểm M sao cho BM=1/3 MC.Trên đáy AC lấy điểm N sao cho AN=2/3AC.Nối Ạ với M, cắt BN tại O
a,So sánh Sao và Sboc
b,So sánh Sbom và Sboc
c, So sánh OM và OA
a: Xét (O) có
CA,CB là các tiếp tuyến
Do đó: CA=CB
=>C nằm trên đường trung trực của AB(1)
ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OC là đường trung trực của AB
=>OC\(\perp\)AB tại trung điểm E của AB
b: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>AB\(\perp\)BD
Ta có: AB\(\perp\)BD
OC\(\perp\)AB
Do đó: BD//OC
c: Gọi giao điểm của DB với AC là K
Ta có: BH\(\perp\)AD
CA\(\perp\)AD
Do đó: BH//CA
Ta có: AB\(\perp\)BD tại B
=>AB\(\perp\)KD tại B
=>ΔABK vuông tại B
Ta có: \(\widehat{BAK}+\widehat{BKA}=90^0\)
\(\widehat{CBA}+\widehat{CBK}=\widehat{ABK}=90^0\)
mà \(\widehat{CBA}=\widehat{CAB}\)
nên \(\widehat{CBK}=\widehat{CKB}\)
=>CK=CB
mà CA=CB
nên CA=CK(3)
Xét ΔDCA có HI//AC
nên \(\dfrac{HI}{AC}=\dfrac{DI}{DC}\left(4\right)\)
Xét ΔDCK có IB//CK
nên \(\dfrac{IB}{CK}=\dfrac{DI}{DC}\left(5\right)\)
Từ (3),(4),(5) suy ra IH=IB
=>BH=2IH
d: Xét tứ giác AOBC có
\(\widehat{OAC}+\widehat{OBC}+\widehat{AOB}+\widehat{ACB}=360^0\)
=>\(\widehat{ACB}+120^0+90^0+90^0=360^0\)
=>\(\widehat{ACB}=60^0\)
Xét ΔBAC có CA=CB và \(\widehat{ACB}=60^0\)
nên ΔBAC đều
Xét (O) có
CA,CB là các tiếp tuyến
Do đó: CO là phân giác của góc ACB
=>\(\widehat{ACO}=\widehat{BCO}=\dfrac{\widehat{ACB}}{2}=\dfrac{60^0}{2}=30^0\)
Xét ΔOAC vuông tại A có \(tanACO=\dfrac{AO}{AC}\)
=>\(\dfrac{R}{AC}=tan30=\dfrac{1}{\sqrt{3}}\)
=>\(AC=R\sqrt{3}\)
Vì ΔACB đều
nên \(S_{ACB}=AC^2\cdot\dfrac{\sqrt{3}}{4}=\dfrac{R^2\cdot3\cdot\sqrt{3}}{4}\)
Cho hình thang ABCD(AB//CD),hai đường chéo cắt nhau tại O
a,CMR SAOD=SBOC
b,Cho biết SAOB=9,SCOD=25 tính SABCD
Cho hình thang ABCD( như hình vẽ) và SAOD = 9cm2 và SBOC =25cm2
Tính diện tích tam giác AOB
cần gấp mn ơi
Cho hình thang ABCD có đáy CD gấp 2 lần AB,AC và BD cắt nhau tại O.
A. So sánh SAOD và SBOC.
B. Biết SABO là 3,5cm2. Tính S hình thang ABCD.
(Nhớ vẽ hình
a/
Hai tg ABD và tg ABC có chung AB và đường cao từ D->AB = đường cao từ C->AB nên \(S_{ABD}=S_{ABC}\)
Hai tg này có phần diện tích chung là \(S_{ABO}\Rightarrow S_{AOD}=S_{BOC}\)
b/
Hai tg ABC và tg ACD có đg cao từ D->AB = đường cao từ B->CD nên
\(\dfrac{S_{ABC}}{S_{ACD}}=\dfrac{AB}{CD}=\dfrac{1}{2}\)
Hai tg trên có chung AC nên
\(\dfrac{S_{ABC}}{S_{ACD}}=\) đg cao từ B->AC / đg cao từ D->AC\(=\dfrac{1}{2}\)
Hai tg ABO và tg AOD có chung AO nên
\(\dfrac{S_{ABO}}{S_{AOD}}=\) đg cao từ B->AC / đg cao từ D->AC\(=\dfrac{1}{2}\)
\(\Rightarrow S_{AOD}=2xS_{ABO}=2x3,5=7cm^2\)
\(\Rightarrow S_{ABD}=S_{ABO}+S_{AOD}=3,5+7=10,5cm^2\)
Hai tg ABD và tg BCD có đg cao từ D->AB = đường cao từ B->CD nên
\(\dfrac{S_{ABD}}{S_{BCD}}=\dfrac{AB}{CD}=\dfrac{1}{2}\Rightarrow S_{BCD}=2xS_{ABD}=2x10,5=21cm^2\)
\(\Rightarrow S_{ABCD}=S_{ABD}+S_{BCD}=10,5+21=31,5cm^2\)
Cho hình tam giác ABC lấy M là trung điểm của AB. N là trung điểm của BC. Nối M với C. N với A. Biết Sabc là 72 . tính SAOC