GPT:
(x-7)(x-5)(x-4)(x-2)=72
GPT:
(x-7)(x-5)(x-4)(x-2)=72
(x-7)(x-5)(x-4)(x-2)=72
<=> (x-7)(x-2)(x-5)(x-4)=72
<=> (x^2-9x+14)(x^2-9x+20)=72
đặt t=x^2-9x+17 (1)
pt trở thành
(t-3)(t+3)=72
<=> t^2-81=0<=> t^2=81<=> t=9 hoặc t=-9
thế t vào (1)
th1 x^2-9x+17=9
<=> x^2-9x+8=0
giải pt => x=8 hoặc x=1
th2 x^2-9x+17=-9
<=> x^2-9x+26=0
giải pt => pt vô nghiệm
S={8;1}
Nguyen Quang Trung copy bài của kagamine rin len trên olm mà đc hoc24 tick là sao>???
GPT:
(x-7)(x-5)(x-4)(x-2)=72
(x-7)(x-5)(x-4)(x-2)=72
<=> (x-7)(x-2)(x-5)(x-4)=72
<=> (x^2-9x+14)(x^2-9x+20)=72
đặt t=x^2-9x+17 (1)
pt trở thành
(t-3)(t+3)=72
<=> t^2-81=0<=> t^2=81<=> t=9 hoặc t=-9
thế t vào (1)
th1 x^2-9x+17=9
<=> x^2-9x+8=0
giải pt => x=8 hoặc x=1
th2 x^2-9x+17=-9
<=> x^2-9x+26=0
giải pt => pt vô nghiệm
S={8;1}
\(\left(x-7\right)\left(x-2\right)\left(x-5\right)\left(x-4\right)\)
\(\left(x^2-9x+14\right)\left(x^2-9x+20\right)=72\)
Đặt : \(x^2-9x+14=t\left(t>0\right)\)
\(\Rightarrow t\left(t+6\right)-72=0\Rightarrow t_1=6\left(tm\right)'t_2=-12\)(loại)
Với \(t=6\Rightarrow x^2-9x+14=6\)
\(\Rightarrow x_1=8;x_2=1\)
GPT:
a)(x-1)x(x+1)(x+2)=24
b)(x-7)(x-5)(x-4)(x-2)=72
Cần lời giải rõ ràng,đầy đủ theo cách giải pt bậc nhất lp 8
a. (x-1)x(x+1)(x+2)=24
[(x-1)(x+2)].[x(x+1)]=24
(\(x^2\)+2x-x-2)(\(x^2\)+x)=24
(\(x^2\)+x-2)(\(x^2\)+x)=24
[(\(x^2\)+x-1)-1].[(\(x^2\)+x-1)+1]=24
\(\left(x^2+x-1\right)^2\)-1=24
\(\left(x^2+x-1\right)^2\)=25
\(\left(x^2+x-1\right)^2\)=\(5^2\) hoặc\(\left(x^2+x-1\right)^2\)=\(\left(-5\right)^2\)
\(x^2\)+x-1=5 hoặc \(x^2\)+x-1=-5
\(x^2\)+x-6=0 hoặc \(x^2\)+x+4=0(vô nghiệm)
\(\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)
Vậy x=2 hoặc x=-3
a)(x-1)x=x2-x
(x+1)(x+2)=x(x+2)+(x+2)=x2+2x+x+2=x2+3x+2
=>(x-1)x(x+1)(x+2)=(x2-x)(x2+3x+2)=x2(x2+3x+2)-x(x2+3x+2)=x4+3x3+2x2-x3-3x2-2x
=x4+2x3-x2-2x
mà (x-1)x(x+1)(x+2)=24
nên x4+2x3-x2-2x=24
x3(x+2)-x(x+2)=24
(x3-x)(x+2)=24
Ta xét bảng sau:
x+2 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 8 | -8 | 12 | -12 | 24 | -24 |
x | -1 | -3 | 0 | -4 | 1 | -5 | 2 | -6 | 4 | -8 | 6 | -10 | 10 | -14 | 22 | -26 |
x3-x | 24 | -24 | 12 | -12 | 8 | -8 | 6 | -6 | 4 | -4 | 3 | -3 | 2 | -2 | 1 | -1 |
x | 2 |
(ô trống là loại)
Vậy x=2, hờ hờ, t làm tầm bậy, không theo phương trình gì hết
Gpt: \(5\sqrt{x-1}-\sqrt{x+7}=3x-4\) (2 cách)
Cách 1:
GPT :\(5\sqrt{x-1}-\sqrt{x+7}=3x-4\) - Hoc24
Cách 2:
Đặt \(\left\{{}\begin{matrix}\sqrt{25x-25}=a\\\sqrt{x+7}=b\end{matrix}\right.\) \(\Rightarrow3x-4=\dfrac{a^2-b^2}{8}\)
Pt trở thành:
\(a-b=\dfrac{a^2-b^2}{8}\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-8\right)=0\)
\(\Leftrightarrow...\)
gpt \(x^{11}+3x^{10}+x^9+3x^8+x^7-3x^6-17x^5+3x^4+x^3+3x^2+x+3=0\)
\(x^{11}+3x^{10}+x^9+3x^8+x^7-3x^6-17x^5+3x^4+x^3+3x^2+x+3=0\)
\(\Leftrightarrow\left(x^{11}+2x^{10}+4x^9+6x^8+9x^7+6x^6+4x^5+2x^4+x^3\right)+\left(x^{10}+2x^9+4x^8+6x^7+9x^6+6x^5+4x^4+2x^3+x^2\right)-\left(5x^9+10x^8+20x^7+30x^6+45x^5+30x^4+20x^3+10x^2+5x\right)+\left(3x^8+6x^7+12x^6+18x^5+27x^4+18x^3+12x^2+6x+3\right)=0\)
\(\Leftrightarrow x^3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+x^2\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)-5\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^3+x^2-5x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
Dễ thấy: \(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1>0\forall x\)
Nên \(\left[{}\begin{matrix}\left(x-1\right)^2=0\\x+3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Tính nhẩm:
7 x 8 = ..... 16 : 2 = ..... 36 : 6 = ..... 49 : 7 = .....
2 x 5 = ..... 72 : 8 = ..... 9 x 3 = ...... 63 : 7 = .....
6 x 4 = ..... 25 : 5 = ..... 4 x 8 = ...... 7 x 5 = ......
7 x 8 = 56 16 : 2 = 8 36 : 6 = 6 49 : 7 = 7
2 x 5 = 10 72 : 8 = 9 9 x 3 = 27 63 : 7 = 9
6 x 4 = 24 25 : 5 = 5 4 x 8 = 32 7 x 5 = 35
7 x 8 = 56
2 x 5 = 10
6 x 4 = 24
16 : 2 = 8
72 : 8 = 9
25 : 5 = 5
36 : 6 = 6
9 x 3 = 27
4 x 8 = 32
49 : 7 = 7
63 : 7 = 9
7 x 5 = 35
GPT:
x^2 - 2x=24
(2x-1)^2 + (x+30)^2 - 5.( x+7) (x-7)=0
\(Gpt:\sqrt{x^4-7}+\sqrt{x^3-7}=x^2\)
ĐKXĐ: \(x\ge\sqrt[3]{7}\)
\(\sqrt{x^4-7}-\left(x^2-1\right)+\sqrt{x^3-7}-1=0\)
\(\Leftrightarrow\dfrac{x^4-7-\left(x^2-1\right)^2}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{x^3-8}{\sqrt{x^3-7}+1}=0\)
\(\Leftrightarrow\dfrac{2\left(x^2-4\right)}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}=0\)
\(\Leftrightarrow\dfrac{2\left(x-2\right)\left(x+2\right)}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{2\left(x+2\right)}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{x^2+2x+4}{\sqrt{x^3-7}+1}\right)=0\)
Do \(x\ge\sqrt[3]{7}>1\Rightarrow x^2>1\Rightarrow x^2-1>0\)
\(\Rightarrow\dfrac{2\left(x+2\right)}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{x^2+2x+4}{\sqrt{x^3-7}+1}>0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
(x - 7)(x - 5)(x - 4)(x - 2)=72
(x-7)(x-2)(x-5)(x-4)=72
(x^2-9x+14)(x^2-9x+20)=72
đặt x^2-9x+14=t (t>0)
=> t(t+6)-72=0 =>t1=6 (tm) ' t2=-12 (loại)
với t=6 => x^2-9x+14=6
=> x1=8 ; x2=1