Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tran thao nguyen
Xem chi tiết
Hoàng Đào
15 tháng 9 2014 lúc 12:38

Ta có: \(a-\sqrt{a}+1=a-2.\frac{1}{2}\sqrt{a}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2+\frac{3}{4}\) >= 3/4

Dấu "=" xảy ra khi a=1/4

Vậy min=3/4 đạt tại x=1/4

Võ Việt Hoàng
Xem chi tiết
Qasalt
Xem chi tiết
Nguyễn Chí Thành
Xem chi tiết
Đặng Công Minh Nghĩa
Xem chi tiết

loading...  

subjects
Xem chi tiết
Nguyễn Bá Minh Nhật
26 tháng 12 2022 lúc 14:50

đợi tý

when the imposter is sus
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Dương đình minh
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Lê Quỳnh Chi Phạm
Xem chi tiết
Akai Haruma
5 tháng 11 2023 lúc 19:52

Lời giải:
a.

\(A=\frac{\sqrt{x}(\sqrt{x^3}-1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(2\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-(2\sqrt{x}+1)+2(\sqrt{x}+1)\)

\(=\sqrt{x}(\sqrt{x}-1)-2\sqrt{x}-1+2\sqrt{x}+2\\ =x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\\ =x-\sqrt{x}+1\)

b.

$A=x-\sqrt{x}+1=(x-\sqrt{x}+\frac{1}{4})+\frac{3}{4}$

$=(\sqrt{x}-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}=\frac{3}{4}$

$\Rightarrow A_{\min}=\frac{3}{4}$

Giá trị này đạt tại $\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}$

Optimus Prime
Xem chi tiết
bui thai hoc
Xem chi tiết
shitbo
9 tháng 2 2020 lúc 19:35

\(\sqrt{2}A=\sqrt{2a\left(b+1\right)}+\sqrt{2b\left(a+1\right)}\le\frac{2a+2b+a+b+2}{2}=\frac{8}{2}=4\)

\(\Rightarrow A\le\frac{4}{\sqrt{2}}=2\sqrt{2}.\text{Dấu "=" xảy ra khi:}a=b=1\)

Khách vãng lai đã xóa

shitbo

Giá trị nhỏ nhất mà :)))

Khách vãng lai đã xóa