Giá trị nhỏ nhất của biểu thức sau là bao nhiêu:
\(a-\sqrt{a}+1\left(a>0\right)\)
giá trị nhỏ nhất của biểu thức sau là bao nhiêu:
\(a-\sqrt{a}+1\left(a>0\right)\)
Ta có: \(a-\sqrt{a}+1=a-2.\frac{1}{2}\sqrt{a}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2+\frac{3}{4}\) >= 3/4
Dấu "=" xảy ra khi a=1/4
Vậy min=3/4 đạt tại x=1/4
Cho \(a,b\) >0 và \(a+b\le2\) . Tìm giá trị nhỏ nhất của biểu thức: \(P=\sqrt[]{a\left(b+1\right)}+\sqrt[]{b\left(a+1\right)}\)
1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).
2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:
\(M=\left(a-b\right)\left(a+b-1\right)\).
3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).
1)
i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.
ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).
2)
i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .
ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).
cho a,b>0 thỏa mãn \(\left(\sqrt{a}+2\right)\left(\sqrt{b}+2\right)=9\)
Tìm giá trị nhỏ nhất của biểu thức T=\(\dfrac{a^4}{b}+\dfrac{b^4}{a}\)
Cho biểu thức \(P=\left(\dfrac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a-b}}+\dfrac{a-b}{\sqrt{a^2-b^2}-a+b}\right).\left(\dfrac{a^2+b^2}{\sqrt{a^2-b^2}}\right)\)với a>b>0
1) Rút gọn biểu thức P
2) Biết a-b=1. Tìm giá trị nhỏ nhất của P
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
1) cho biểu thức A= \(\dfrac{x^2-\sqrt{x}}{x-\sqrt{x}+1}\) - \(\dfrac{2x+\sqrt{x}}{\sqrt{x}}\) + \(\dfrac{2.\left(x-1\right)}{\sqrt{x}-1}\) ( x>0; x ≠1)
a) Rút gọn biểu thức A
b) Tìm giá trị nhỏ nhất của 4
Lời giải:
a.
\(A=\frac{\sqrt{x}(\sqrt{x^3}-1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(2\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-(2\sqrt{x}+1)+2(\sqrt{x}+1)\)
\(=\sqrt{x}(\sqrt{x}-1)-2\sqrt{x}-1+2\sqrt{x}+2\\ =x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\\ =x-\sqrt{x}+1\)
b.
$A=x-\sqrt{x}+1=(x-\sqrt{x}+\frac{1}{4})+\frac{3}{4}$
$=(\sqrt{x}-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}=\frac{3}{4}$
$\Rightarrow A_{\min}=\frac{3}{4}$
Giá trị này đạt tại $\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}$
Cho biểu thức S = \(\frac{2002-1998:\left(a-16\right)}{316+6,84:0,01}\)
a, Tính giá trị biểu thức S biết a = 1015
b, Tìm giá trị số tự nhiên của a để biểu thức S có giá trị nhỏ nhất, giá trị nhỏ nhất đó là bao nhiêu .
Cho a,b là hai số dương thoản mãn a+b<=2 tìm giá trị nhỏ nhất của biểu thức A=\(\sqrt{a\left(b+1\right)}+\sqrt{b\left(a+1\right)}\)
\(\sqrt{2}A=\sqrt{2a\left(b+1\right)}+\sqrt{2b\left(a+1\right)}\le\frac{2a+2b+a+b+2}{2}=\frac{8}{2}=4\)
\(\Rightarrow A\le\frac{4}{\sqrt{2}}=2\sqrt{2}.\text{Dấu "=" xảy ra khi:}a=b=1\)
shitbo
Giá trị nhỏ nhất mà :)))