GIÁ TRỊ NHỎ NHẤT CỦA 10+4x\(^2\)+4x
GIÁ TRỊ NHỎ NHẤT CỦA 10+4X^2+4X
4x2 +4x +10 = (2x+)2+ 9 >=9
GTNN = 9 khi x=-1/2
Số gồm 100 chữ số 3 có là: 3333 ...33 (100 chữ số 3) = 3 x 111 ...11 (100 chữ số 1)
Số nhỏ nhất gồm toàn chữ số 1 chia hết cho số gồm 100 chữ số 3 thì số đó phải vừa chia hết cho 3 vừa chia hết cho 1111 ...11 (100 chữ số 1)
Số nhỏ nhất chia hết cho số có 100 chữ số thì phải là số có 100 chữ số 1, 200 chữ số 1 , 300 chữ số 1 .....
Mà trong các số đó có số 300 chữ số 1 là số nhỏ nhất vừa chết cho 3 vừa chia hết cho 1111 ... (100 chữ số1)
Vậy số nhỏ nhất phải tìm là: 1111111 ... 11(300 chữ số 1)
ta cóA= 4x2+4x+10
=4x2+4x+1+9
=(2x+1)2+9>=9 Dấu "=" xảy ra khi x=-1/2
Vậy GTNN của A là 9 khi x=-1/2
a, Tìm giá trị lớn nhất của biểu thức: A=4x-x^2+3
b. Tìm giá trị nhỏ nhất của biểu thức:B=4x^2-12x+15
c,Tìm giá trị nhỏ nhất của biểu thức:C=4x^2+2y^2-4xy-4y+1
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của các biểu thức
H = \(\dfrac{-2021}{4x^2+4x+3}\)
I = \(\dfrac{-2019}{5x^2-2x+10}\)
1) \(4x^2+4x+3=\left(2x+1\right)^2+2\ge2\)
\(\Rightarrow\dfrac{2021}{4x^2+4x+3}\le\dfrac{2021}{2}\Rightarrow H=-\dfrac{2021}{4x^2+4x+3}\ge-\dfrac{2021}{2}\)
\(ĐTXR\Leftrightarrow x=-\dfrac{1}{2}\)
2) \(5x^2-2x+10=5\left(x^2-\dfrac{2}{5}x+\dfrac{1}{25}\right)+\dfrac{49}{5}=5\left(x-\dfrac{1}{5}\right)^2+\dfrac{49}{5}\ge\dfrac{49}{5}\)
\(\Rightarrow I=\dfrac{-2019}{5x^2-2x+10}\ge-\dfrac{10095}{49}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{5}\)
Tìm giá trị nhỏ nhất của biểu thức
\(\sqrt{4x^2+4x+10-2}\)
\(\sqrt{4x^2+4x+8}\)= \(\sqrt{7+\left[\left(2x\right)^2+2×2×x+1\right]}\)
= \(\sqrt{7+\left(2x+1\right)^2}\)
Vậy GTNN là \(\sqrt{7}\)đạt được khi x = \(\frac{-1}{2}\)
=căn 4(x +1/2)2 -1/4 +8 = \(\sqrt{\frac{31}{4}}\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
tìm GTNN,GTLN của biểu thức sau
a)giá trị nhỏ nhất
A= 9x^2-x+5
b) Giá trị nhỏ nhất
B= 4x^2+2y^2+4xy+2018
c) gia tri lớn nhất
C= 3x-4x^2+10
d) giá trị lớn nhất
D= -5x^2-y^2+2xy-4x+2016
giúp mik với.GẤP LẮM Ạ
a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5
GTNN A = 4,97
b) = (2x +y)2 + y2 + 2018
GTNN B = 2018 khi x=0;y=0
c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10
GTLN C = 169/16
d) = -(x-y)2 - (2x +1) +1 + 2016
GTLN D = 2017
(trg bn cho bài khó dữ z, làm hại cả não tui)
Bài 2: Tìm giá trị nhỏ nhất của biểu thức M = x ^ 2 + 4x + 10
\(M=x^2+4x+10\)
\(=\left(x^2+4x+4\right)+6\)
\(=\left(x+2\right)^2+6\ge6\).
Vậy: \(MinM=6\). Dấu đẳng thức xảy ra khi và chỉ khi \(x+2=0\Leftrightarrow x=-2.\)
`M = x^2 + 4x + 4 + 6 = (x+2)^2 + 6 >= 0 + 6 =6`.
ĐTXR `<=> x + 2 = 0 <=> x = -2`.
Vậy Min M = `6 <=> x = -2`.
giá trị nhỏ nhất của 4x^2-12x+10
\(4x^2-12x+10=\left(2x-3\right)^2+1\ge1\)
Vậy Min của biểu thức trên là 1 dấu = xay ra khi x=3/2
tìm giá trị nhỏ nhất của P = 10 / - x^2 + 4x - 9
- giúp mình với mình cần gấp lắm ạ