\(P=x^2-2x+5\)
\(Q=2x^2-6x\)
tìm giá trị nhỏ nhất
tìm giá trị nhỏ nhất của \(A=x^2-2x+5\)
tìm giá trị nhỏ nhất của \(B=2x^2-6x\)
tìm giá trị lớn nhất của \( C=4x-x^2+3\)
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)
tìm giá trị nhỏ nhất của biểu thức A= \(\frac{2x^2-6x+5}{x^2-2x+1}\)
\(A=\frac{2x^2-6x+5}{x^2-2x+1}=\frac{x^2-4x+4+x^2-2x+1}{x^2-2x+1}\)
\(=\frac{\left(x-2\right)^2+\left(x-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\)
Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\ge1\)
\(\Rightarrow A\ge1\).Nên GTNN của \(A=1\) đạt được khi \(x=2\)
Tìm giá trị nhỏ nhất
C= \(\frac{2}{6x-5-9x^2}\)
Tìm giá trị lớn nhất
M = \(\frac{3}{2x^2+2x+3}\)
N = x - x2
C = \(\frac{2}{6x-5-9x^2}=\frac{2}{-\left(9x^2-6x+1\right)-4}=\frac{2}{-\left(3x-1\right)^2-4}\ge-\frac{1}{2}\forall x\)
Dấu "=" xảy ra <=> 3x - 1 = 0 =<=> x = 1/3
Vậy MinC = -1/2 khi x = 1/3
M = \(\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\forall x\)
Dấu "=" xảy ra <=> x + 1/2= 0 <=> x = -1/2
Vậy MaxM = 6/5 khi x = -1/2
N = x - x2 = -(x2 - x + 1/4) + 1/4 = -(x - 1/2)2 + 1/4 \(\le\)1/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy MaxN = 1/4 khi x = 1/2
Edogawa Conan giúp em luôn bài giá trị lớn nhất luôn được không ạ?
tìm giá trị nhỏ nhất của M=9x^2-6x+6
tìm giá trị lớn nhất của M=5-2x-x^2; N=5+6x-9x^2
1) \(M=9x^2-6x+6=\left(9x^2-6x+1\right)+5=\left(3x-1\right)^2+5\ge5\)
\(minM=5\Leftrightarrow x=\dfrac{1}{3}\)
2) \(M=5-2x-x^2=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)
\(maxM=6\Leftrightarrow x=-1\)
3) \(N=5+6x-9x^2=-\left(9x^2-6x+1\right)+6=-\left(3x-1\right)^2+6\le6\)
\(maxN=6\Leftrightarrow x=\dfrac{1}{3}\)
Tìm giá trị nhỏ nhất của đa thức:
a)P=x^2-2x+5
b)Q=2x^2-6x
c)M=x^2+y^2-x+6y+10
TÌM GIÁ TRỊ NHỎ NHẤT
\(A=2x^2+2x-1\)
\(B=\frac{5}{-x^2-6x-5}\)
\(C=x^2-xy+y^2-2x-2y\)
a) ta có : \(2x^2+2x-1=2\left(x^2+x-\frac{1}{2}\right)\)) = \(2\left(x^2+2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}-\frac{1}{2}\right)\)
\(=2.\left[\left(x+\frac{1}{2}\right)^2-\frac{3}{4}\right]\)\(=2\left(x+\frac{1}{2}\right)^2-\frac{3}{2}\)
Vì \(\left(x+\frac{1}{2}\right)^2>=0\) => \(2\left(x+\frac{1}{2}\right)^2-\frac{3}{2}>=0\) => \(2.\left(x+\frac{1}{2}\right)^2>=-\frac{3}{2}\)
Vậy GTNN của A là \(\frac{-3}{2}\). dấu " = " xảy ra khi và chỉ khi x =\(\frac{-1}{2}\)
Tìm giá trị nhỏ nhất của các đa thức
a) P=x^2-2x+5
b) Q= 2x^2-6x
c) M=x^2+y^2-x+6y+10
a) \(x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\)
MIN P = 4 khi \(x-1=0=>x=1\)
b) \(2x^2-6x\)
\(=2\left(x^2-3x\right)\)
\(=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)
\(=\frac{-18}{4}+2\left(x^2-\frac{3}{2}\right)^2\le\frac{-18}{4}\)
MIN Q = \(\frac{-18}{4}\)khi \(x^2-\frac{3}{2}=0\)
\(=>x^2=\frac{3}{2}\)
\(=>\orbr{\begin{cases}x=-\sqrt{\frac{3}{2}}\\x=\sqrt{\frac{3}{2}}\end{cases}}\)
Ủng hộ nha
a) P=x^2-2x+5
=x2-2x+1+4
=(x-1)2+4
Ta thấy;\(\left(x-1\right)^2+4\ge0+4=4\)
Dấu = <=>x-1=0 =>x=1
Vậy...
Tìm giá trị nhỏ nhất của:
a) \(A=\frac{x+1}{x^2}\)
b) \(B=\frac{2x^2-6x+5}{x^2-2x+1}\)
Tìm x,y sao cho biểu thức A=\(2x^2+9y^2-6xy-6x-12y+2024\)đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó.