Cho \(\log_ab=3;\log_ac=-2\)
Tính \(\log_ax\) biết :
1. \(x=a^3b^2\sqrt{c}\)
2. \(x=\frac{a^4\sqrt[3]{b}}{c^3}\)
3. \(x=\log_a\frac{a^2\sqrt[3]{b}c}{\sqrt[3]{a\sqrt{c}}b^3}\)
Cho a,b là các số thực dương và \(a\ne1\), thỏa mãn \(\log_{a^2}\left(\dfrac{a^3}{\sqrt[5]{b^3}}\right)=3\). Giá trị của \(\log_ab=?\)
\(log_{a^2}\left(\dfrac{a^3}{\sqrt[5]{b^3}}\right)=\dfrac{1}{2}log_a\left(\dfrac{a^3}{\sqrt[5]{b^3}}\right)=\dfrac{1}{2}\left[log_aa^3-log_a\sqrt[5]{b^3}\right]=\dfrac{1}{2}\left(3-\dfrac{3}{5}log_ab\right)\)
\(\Rightarrow\dfrac{1}{2}\left(3-\dfrac{3}{5}log_ab\right)=3\)
\(\Rightarrow log_ab=-5\)
Cho a,b là các số thực dương >1 thỏa mãn \(\log_ab=3\). Tính \(P=\log_{a^2b}a^3-3\log_{a^2}2.\log_4\left(\dfrac{a}{b}\right)\)
\(P=3log_{a^2b}a-\dfrac{3}{4}log_a2.log_2\left(\dfrac{a}{b}\right)\)
\(=\dfrac{3}{log_a\left(a^2b\right)}-\dfrac{3}{4.log_2a}.\left(log_2a-log_2b\right)\)
\(=\dfrac{3}{log_aa^2+log_ab}-\dfrac{3}{4.log_2a}.log_2a+\dfrac{3}{4}.\dfrac{log_2b}{log_2a}\)
\(=\dfrac{3}{2+3}-\dfrac{3}{4}+\dfrac{3}{4}.log_ab=\dfrac{3}{5}-\dfrac{3}{4}+\dfrac{9}{4}=\dfrac{21}{10}\)
Rút gọn biểu thức sau :
\(A=\left(\log_ab+\log_ba+2\right)\left(\log_ab-\log_{ab}b\right)\log_ba-1\)
\(B=\left(\log b_a+\log_ba+2\right)\left(\log b_a-\log b_{ab}\right)-1=\left(\log b_a+\frac{1}{\log b_a}+2\right)\left(\log b_a.\log_ba-\left(\log_{ab}b.\log_ba\right)\right)-1\)
\(=\frac{\log^2_ab+2\log_ab+1}{\log_ab}\left(1-\log_{ab}a\right)-1=\frac{\left(\log_ab+1\right)^2}{\log_ab}\left(1-\frac{1}{\log_aab}\right)-1\)
\(=\frac{\left(\log_ab+1\right)^2}{\log_ab}\left(1-\frac{1}{1+\log_ab}\right)-1=\frac{\left(\log_ab+1\right)^2}{\log_ab}.\frac{\log_ab}{1+\log_ab}-1=\log_ab+1-1=\log_ab\)
Cho a,b là các số thực dương thỏa mãn \(\log_ab=2\). Tính giá trị của \(P=\log_{\dfrac{\sqrt{a}}{b}}\left(a.\sqrt[3]{b}\right)\)
\(P=log_{\dfrac{\sqrt{a}}{b}}a+log_{\dfrac{\sqrt{a}}{b}}\sqrt[3]{b}=log_{\dfrac{\sqrt{a}}{b}}a+\dfrac{1}{3}log_{\dfrac{\sqrt{a}}{b}}b\)
\(=\dfrac{1}{log_a\dfrac{\sqrt{a}}{b}}+\dfrac{1}{3.log_b\dfrac{\sqrt{a}}{b}}=\dfrac{1}{log_a\sqrt{a}-log_ab}+\dfrac{1}{3\left(log_b\sqrt{a}-log_bb\right)}\)
\(=\dfrac{1}{\dfrac{1}{2}-2}+\dfrac{1}{3\left(\dfrac{1}{4}-1\right)}=-\dfrac{10}{9}\)
\(3^x.5^{x^2-1}=75\\ x=-log_ab\\ a+b=?\)
Rút gọn biểu thức sau :
\(A=\left(\log_ab+\log_ba+2\right)\left(\log_ab-\log_{ab}b\right)\log_ba-1\)
\(=\left(\log_ab+\log_ba+2\right)\left(1-\log_{ab}a\right)-1\)
\(=\left(\log_ab+\log_ba+2\right)\left(1-\frac{1}{1+\log_ab}\right)-1\)
\(=\frac{1}{1+\log_ab}\left(\log_ab+\log_ba+2\right)-1\)
\(=\frac{1}{1+\log_ab}\left[\left(\log_ab+\log_ba+2\right)-1-\log_ab\right]\)
\(=\frac{1}{1+\log_ab}\left(\log_ab+\log^2_ba\right)=\log_ab\)
Chứng minh rằng :
a) \(\log_{a_1}a_2.\log_{a_2}a_3.\log_{a_3}a_4.....\log_{a_{n-1}}a_n=\log_{a_1}a_n\)
b) \(\dfrac{1}{\log_ab}+\dfrac{1}{\log_{a^2}b}+\dfrac{1}{\log_{a^3}b}+.....+\dfrac{1}{\log_{a^nb}}=\dfrac{n\left(n+1\right)}{2\log_ab}\)
a) Áp dụng công thức: \(\log_ab.\log_bc=\log_ac\)
b) Vì \(\dfrac{1}{\log_{a^k}b}=\dfrac{1}{\dfrac{1}{k}\log_ab}=\dfrac{k}{\log_ab}\) nên biểu thức vế trái bằng:
\(VT=\dfrac{1}{\log_ab}\left(1+2+...+n\right)\)
\(=\dfrac{1}{\log_ab}.\dfrac{n\left(n+1\right)}{2}=VP\)
Chứng minh bất đẳng thức :
\(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge3\sqrt[3]{abc}\) với a,b,c dương khác 1
Ta có :
\(a^{\log_bc}=c^{\log_ba}\Rightarrow a^{\log_bc}+c^{\log_ab}=c^{\log_ba}+c^{\log_ab}\ge2\sqrt{c^{\log_ba}.c^{\log_ab}}=2\sqrt{c^{\log_ba+\log_ab}}\) (1)
Vì \(a,b>1\) nên áp dụng BĐT Cauchy cho 2 số không âm \(\log_ba\) và \(\log_ab\), ta được :
\(\log_ab+\log_ba\ge2\sqrt{\log_ab.\log_ba}=2\) (2)
Từ (1) và (2) \(\Rightarrow a^{\log_bc}+b^{\log_ab}\ge2\sqrt{c^2}=2c\)
hay \(\Rightarrow a^{\log_bc}+c^{\log_ab}\ge2c\)
Chứng minh tương tự ta được :
\(a^{\log_bc}+b^{\log_ca}\ge2a\)
\(b^{\log_ca}+c^{\log_ab}\ge2b\)
\(\Rightarrow2\left(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\right)\ge2\left(a+b+c\right)\)
hay :
\(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge a+b+c\) (*)
Mặt khác theo BĐT Cauchy ta có : \(a+b+c\ge3\sqrt[3]{abc}\) (2*)
Từ (*) và (2*) ta có :
\(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge3\sqrt[3]{abc}\)
Cho \(\log_ab=3;\log_ac=-2\). Hãy tính \(\log_ax\) với :
a) \(x=a^3b^2\sqrt{c}\)
b) \(x=\dfrac{a^4\sqrt[3]{b}}{c^3}\)
Bài 1: Cho a, b, c > 1. CMR: \(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge3\sqrt[3]{abc}\)
Bài 2: Cho các số x, y, z > 0 thoả mãn: \(\dfrac{x\left(y+z-x\right)}{logx}=\dfrac{y\left(z+x-y\right)}{logy}=\dfrac{z\left(x+y-z\right)}{logz}\). CMR: xy.yx = yz.zy = xz.zx