bài 4: chứng minh 16^28 + 8 chia hết cho 72
bài 5:
Chứng minh 16^28+8 chia hết cho 72
Tui mới chi chứng minh chia hết cho 8 thôi:
Tôi coi dấu : = dấu chia hết
16^28:6 ; 8:8=> 16^28+8 : 8 (1)
còn tiếp thì chịu;.................
Bài 1:Chứng minh rằng :
a) 10^28+8 chia hết cho 72
b)8^8+2^20 chia hết cho17
Bài 2 :Cho :
a)A = 2+2^2+2^3+.........+2^60
chứng minh rằng Achia hết cho 3; 7; 15
a)$10^{28}$1028 chia 9 dư 1
8 chia 9 dư 8
1 + 8 = 9 chia hết cho 9
$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 9 (1)
$10^{28}$1028 chia hết cho 8 (vì có 3 chữ số tận cùng là 000 chia hết cho 8)
8 chia hết cho 8
$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 8 (2)
Từ (1) và (2) kết hợp với ƯCLN (8,9) = 1 . Suy ra $10^{28}+8$1028+8 chia hết cho 72
b)$8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}\times\left(2^4+1\right)=2^{20}\times17$88+220=(23)8+220=224+220=220×(24+1)=220×17 chia hết cho 17
Chứng minh rằng:
a) 165 + 215 chia hết cho 33.
b) 1028 + 8 chia hết cho 72.
a) Chứng minh rằng: 165 + 215 chia hết cho 33
165 + 215
= (24)5 + 215
= 220 + 215
= 215. 25 + 215
= 215( 25 + 1 )
= 215. 33 chia hết cho 33
Vậy 165 + 215 chia hết cho 33
b) Ta có : 1028 + 8 = 100...008 ( 27 chữ số 0 )
Xét 008 chia hết cho 8 ⇒ 1028 + 8 chia hết cho 8. (1)
Xét 1 + 27.0 + 8 = 9 chia hết cho 9 ⇒ 1028 + 8 chia hết cho 9 (2)
Mà U7CLN (8,9) = 1 (3)
Từ (1) ; (2) và (3) ⇒ 1028 + 8 chia hết cho 72 (do 8.9=72)
a ) Ta thấy : \(16^5=2^{20}\)
\(\Rightarrow A=16^5+2^{15}=2^{20}+2^{15}\)
\(=2^{15}.2^5+2^{15}\)
\(=2^{15}.\left(2^5+1\right)\)
\(=2^{15}.33\)
Nên số này luôn chia hết cho 33
b )
Ta có:10 đồng dư với 1(mod 9)
Suy ra 10^28 đồng dư với 1^28 đồng dư với 1( mod 9)
Mà 8 đồng dư với -1 (mod 9)
Suy ra 10^28 +8 chia hết cho 9(mod 9) (1)
Mặt khác 10^ 3 chia hết cho 8 suy ra 10^28 chia hết cho 8 suy ra 10^28 +8 chia hết cho 8 (2)
ƯCLN (8;9)=1 (3)
Từ (1);(2);(3) suy ra(đpcm)
Chứng minh rằng:
a) 165 + 215 chia hết cho 33.
b) 1028 + 8 chia hết cho 72.
a) Chứng minh rằng: 165 + 215 chia hết cho 33
165 + 215
= (24)5 + 215
= 220 + 215
= 215. 25 + 215
= 215( 25 + 1 )
= 215. 33 chia hết cho 33
Vậy 165 + 215 chia hết cho 33
b) Ta có : 1028 + 8 = 100...008 ( 27 chữ số 0 )
Xét 008 chia hết cho 8 \(\Rightarrow\) 1028 + 8 chia hết cho 8. (1)
Xét 1 + 27.0 + 8 = 9 chia hết cho 9 \(\Rightarrow\) 1028 + 8 chia hết cho 9 (2)
Mà U7CLN (8,9) = 1 (3)
Từ (1) ; (2) và (3) \(\Rightarrow\) 1028 + 8 chia hết cho 72 (do 8.9=72)
Chứng minh : 10^28+8 chia hết cho 72
Ta có:10^28+8=100...008 (27 chữ số 0)
Xét 008 chia hết cho 8 =>10^28+8 chia hết cho 8 (1)
Xét 1+27.0+8=9 chia hết cho 9=>10^28+8 chia hết cho 9 (2)
Mà (8,9)=1 (3).Từ (1),(2),(3) =>10^28+8 chia hết cho (8.9=)72
Nếu chưa học thì giải zầy:
10^28+8=2^28.5^28+8
=2^3.2^25.5^28+8
=8.2^25.5^28+8 chia hết cho 8
Mặt khác:10^28+8 chia hết cho 9(chứng minh như cách 1) và(8,9)=1
=>10^28+8 chia hết cho 8.9=72
Tick nhé
Chứng minh : 10^28 + 8 chia hết cho 72
Ta có:1028+8=100...008 (27 chữ số 0)
Xét 008 chia hết cho 8 =>1028 + 8 chia hết cho 8 (1)
Xét 1+27.0+8 = 9 chia hết cho 9 =>1028 + 8 chia hết cho 9 (2)
Mà (8,9 )= 1 (3).
Từ (1),(2),(3) =>1028 +8 chia hết cho tích (8.9) = 72 (đpcm)
10^28+8= 100...008
3 chữ số tận cùng tổng là 8 thì số này chia hết cho 8
tổng các chữ số bằng 9 thì số này chia hết cho 9
Mà 8.9=72 nên 10^28+8 chia hết cho72
đúng thì k giùm cái chữ ĐÚNG bên dưới nhé
a. Chứng minh rằng nếu: (ab + cd + eg) chia hết cho 11 thì abcdeg chia hết cho 11
b. Chứng minh rằng: 10^28 + 8 chia hết cho 72
a. VD: (12 + 30 + 68) \(⋮\)11 nên 123068 \(⋮\)11
Vậy: (ab + cd + eg) \(⋮\)11 thì abcdeg \(⋮\)11.
b. Đề bài sai
Chúc bạn học tốt!
Có gì đâu, câu nào khó cứ hỏi mk nhé, các bn bảo mk vẫn giỏi Toán mà.
Chứng minh rằng: 10^28+8 chia hết cho 72
Ta có : 10^28 + 8
=10^3 . 10^25 + 8
= 1000.10^25+8 chia hết cho 8=>10^28+8 chia hết cho 8
Ta có : 10^28 +8
=1+0+0+ ...+ 0 +8 ( 28 chữ số 0 )
=100...008 (27 chữ số 0)
Ta thấy : Tổng các chữ số của 100...008 là :
1+0+0 +...+0+8=9 chia hết cho 9=> 10^28 +8 chia hết cho 9
suy ra:
10^28 +8 chia hết cho 8
Và 10^28 +8 chia hết cho 9
Mà (8;9)=1
Vì 10^28 chia hết cho 8.9
Nên 10 ^28 chia hết cho 72
Chứng minh rằng 10^28+8 chia hết cho 72
Ta có : 10^28 + 8
=10^3 . 10^25 + 8
= 1000.10^25+8 chia hết cho 8
=> 10^28 + 8 chia hết cho 8 (1)
Lại có : 10^28 +8
=1+0+0+ ...+ 0 +8 ( 28 chữ số 0 )
=100...008 (27 chữ số 0)
Ta thấy : Tổng các chữ số của 100...008 là :
1+0+0 +...+0+8=9 chia hết cho 9
=> 10^28 +8 chia hết cho 9 (2)
Từ (1) và (2) suy ra :
10^28 +8 chia hết cho 8
Và 10^28 +8 chia hết cho 9
Mà (8; 9)=1
=> 10^28 chia hết cho 8.9
=> 10 ^28 chia hết cho 72
tik mình nha
Ta có : 10^28 + 8
=10^3 . 10^25 + 8
= 1000.10^25+8 chia hết cho 8=>10^28+8 chia hết cho 8
Ta có : 10^28 +8
=1+0+0+ ...+ 0 +8 ( 28 chữ số 0 )
=100...008 (27 chữ số 0)
Ta thấy : Tổng các chữ số của 100...008 là :
1+0+0 +...+0+8=9 chia hết cho 9=> 10^28 +8 chia hết cho 9
suy ra:
10^28 +8 chia hết cho 8
Và 10^28 +8 chia hết cho 9
Mà (8;9)=1
Vì 10^28 chia hết cho 8.9
Nên 10 ^28 chia hết cho 72
Ta có : 10^28 + 8
=10^3 . 10^25 + 8
= 1000.10^25+8 chia hết cho 8=>10^28+8 chia hết cho 8
Ta có : 10^28 +8
=1+0+0+ ...+ 0 +8 ( 28 chữ số 0 )
=100...008 (27 chữ số 0)
Ta thấy : Tổng các chữ số của 100...008 là :
1+0+0 +...+0+8=9 chia hết cho 9=> 10^28 +8 chia hết cho 9
suy ra:
10^28 +8 chia hết cho 8
Và 10^28 +8 chia hết cho 9
Mà (8;9)=1
Vì 10^28 chia hết cho 8.9
Nên 10 ^28 chia hết cho 72