a) Chứng minh rằng: 165 + 215 chia hết cho 33
165 + 215
= (24)5 + 215
= 220 + 215
= 215. 25 + 215
= 215( 25 + 1 )
= 215. 33 chia hết cho 33
Vậy 165 + 215 chia hết cho 33
b) Ta có : 1028 + 8 = 100...008 ( 27 chữ số 0 )
Xét 008 chia hết cho 8 ⇒ 1028 + 8 chia hết cho 8. (1)
Xét 1 + 27.0 + 8 = 9 chia hết cho 9 ⇒ 1028 + 8 chia hết cho 9 (2)
Mà U7CLN (8,9) = 1 (3)
Từ (1) ; (2) và (3) ⇒ 1028 + 8 chia hết cho 72 (do 8.9=72)
a ) Ta thấy : \(16^5=2^{20}\)
\(\Rightarrow A=16^5+2^{15}=2^{20}+2^{15}\)
\(=2^{15}.2^5+2^{15}\)
\(=2^{15}.\left(2^5+1\right)\)
\(=2^{15}.33\)
Nên số này luôn chia hết cho 33
b )
Ta có:10 đồng dư với 1(mod 9)
Suy ra 10^28 đồng dư với 1^28 đồng dư với 1( mod 9)
Mà 8 đồng dư với -1 (mod 9)
Suy ra 10^28 +8 chia hết cho 9(mod 9) (1)
Mặt khác 10^ 3 chia hết cho 8 suy ra 10^28 chia hết cho 8 suy ra 10^28 +8 chia hết cho 8 (2)
ƯCLN (8;9)=1 (3)
Từ (1);(2);(3) suy ra(đpcm)