Tính (a+b)5 từ đó cm: (a+b+c)5 chia hết cho 5abc (a, b, c là các số nguyên khác 0, a+b+c=0)
Cho các số nguyên a, b, c thỏa mãn a + b + c = 0 .
Chứng minh rằng: a5+b5+c5 chia hết cho 5abc
Ta có:
\(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^5=-c^5\)
\(\Rightarrow a^5+5a^4b+10a^3b+10a^2b^3+5ab^4+b^5=-c^5\)
\(\Rightarrow a^5+b^5+c^5=5ab\left(a^3+b^3+2a^2b+2ab^2\right)\)
\(\Rightarrow a^5+b^5+c^5=5ab\left[\left(a^3+b^3\right)+2ab\left(a+b\right)\right]\)
\(\Rightarrow a^5+b^5+c^5=5ab\left[\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)\right]\)
\(\Rightarrow a^5+b^5+c^5=5ab\left(a+b\right)\left(a^2+ab+b^2\right)\)
\(\Rightarrow a^5+b^5+c^5=-5abc\left(a^2+ab+b^2\right)\)
\(\Rightarrowđpcm\)
Cho các số nguyên a,b,c thỏa mãn a+b+c=0. Chứng minh rằng
a) a3+b3+c3 chia hết cho 3abc
b) a5+b5+c5 chia hết cho 5abc
c) a7+b7+c7 chia hết cho 7abc
Câu hỏi của trần thị bảo trân - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi trên là c/m \(a^3+b^3+c^3=3abc\)
Vậy thì suy ra được \(a^3+b^3+c^3⋮3abc\)
Mấy câu còn lại tương tự
Cho các số nguyên a,b,c thỏa mãn : a+b+c=0 .Chứng minh rằng :
a, a3 + b3 +c3 chia hết cho 3abc
b, a5 + b5 + c5 chia hết cho 5abc
GIAIR GIÚP MK NHA < = = = >
Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath
a) cho A=18x+17y và B=x+2y. CM A chia hất cho 19 khi và chỉ khi B chia hết cho 19 với mọi số nguyên x,y
b) cho a, b là các số nguyên. CMR 3a-b chia hết cho 5 khi và chỉ khi a-2b chia hết cho 5
c) cho x, y là 2 sô nguyên khác 0. Cm 3x^2-10y chia hết` cho 13 khi và chỉ khi x^2+y chia hết cho 13
1.Cho các số nguyên a,b,c thỏa mãn a+b+c=0. CMR:
a) \(a^3+b^3+c^3⋮3abc\)
b)\(a^5+b^5+c^5⋮5abc\)
2.Cho a,b,c là các số nguyên dương sao cho a+1,b+2007 chia hết cho 6.CMR:\(P=4^a+a+b⋮6\)
3.Cho \(A=\left(a+b\right)\left(b+c\right)\left(c+a\right)-abcvớia,b,c\inℤ.CMR:a+b+c⋮4\Rightarrow A⋮4\)
cho a,b,c là các số nguyên thỏa mãn điều kiện: a+b+c chia hết cho 12. chứng minh: P=(a+b)(b+c)(c+a)-5abc chia hết cho 12
cho a,b,c thuộc Z thoã mãn a+b+c=0
cmr a^5+b^5+c^5 chia hết cho 5abc
Ta có :
\(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^5=-c^5\)
\(\Leftrightarrow a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5=-c^5\)
\(\Leftrightarrow a^5+b^5+c^5=-5ab\left(a^3+b^3+2a^2b+2ab^2\right)\)
\(\Leftrightarrow a^5+b^5+c^5=-5ab\left[\left(a^3+b^3\right)+2ab\left(a+b\right)\right]\)
\(\Leftrightarrow a^5+b^5+c^5=-5ab\left(a+b\right)\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow a^5+b^5+c^5=-5abc\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow a^5+b^5+c^5\) chia hết cho \(5abc\left(đpcm\right)\)
Gọi :
A là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 3 ;
B là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 9 ;
C là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 5.
a) Tìm các phần tử của B hợp C, A giao C, B giao C.
b) Hãy xác định tập hợp A hợp B, A giao B.
c) Trong ba tập hợp A, B, C tập hợp nào là tập hợp con của một trong hai tập còn lại ?
Gọi :
A là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 3 ;
B là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 9 ;
C là tập hợp các số tự nhiên khác 0, nhỏ hơn 30, chia hết cho 5.
a) Tìm các phần tử của B hợp C, A giao C, B giao C.
b) Hãy xác định tập hợp A hợp B, A giao B.
c) Trong ba tập hợp A, B, C tập hợp nào là tập hợp con của một trong hai tập còn lại ?