Tìm trên trục hoành các điểm có thể kẻ đến đồ thị hàm số \(y=\frac{x^2}{x-1}\) hai tiếp tuyến tạo với nhau một góc \(45^0\)
Cho hàm số \(y=-x^3+3x+2\). Tìm những điểm trên trục hoành sao cho từ đó kẻ được 3 tiếp tuyến đến đồ thị hàm số và trong đó có 2 tiếp tuyến vuông góc với nhau.
Xét điểm \(M\left(m;0\right)\in Ox\).
Đường thẳng d đi qua M, hệ số góc k có phương trình : \(y=k\left(x-m\right)\)
d là tiếp tuyến \(\Leftrightarrow\begin{cases}-x^3+3x+2=k\left(x-m\right)\\-3x^2+3=k\end{cases}\) có nghiệm
Thế k vào phương trình thứ nhất, ta được :
\(3\left(x^2-1\right)\left(x-m\right)-\left(x^3-3x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x^2-3\left(1+m\right)x+3m\right)-\left(x+1\right)\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[2x^2-\left(3m+2\right)x+3m+2\right]=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\2x^2-\left(3x+2\right)x+3m+2=0\left(a\right)\end{array}\right.\)
Để từ M kẻ được 3 tiếp tuyến thì (a) phải có 2 nghiệm phân biệt khác -1
\(\begin{cases}\Delta=\left(3m+2\right)\left(3m-6\right)>0\\3m+3\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}m< -\frac{2}{3}Vm>2\\m\ne-1\end{cases}\) (*)
Gọi \(x_1;x_2\) là 2 nghiệm của (a), khi đó hệ số góc của 3 tiếp tuyến là :
\(k_1=-3x_1^2+3;k_2=-3x_2^2+3;k_3=0\)
Để 2 trong 3 tiếp tuyến này vuông góc với nhau \(\Leftrightarrow k_1.k_2=-1\)
\(\Leftrightarrow9\left(x^2_1-1\right)\left(x^2_2-1\right)=1\Leftrightarrow9x^2_1x^2_2-9\left(x_1+x_2\right)^2+18x_1x_2+8=0\left(i\right)\)
Mặt khác, theo định lý Viet, \(x_1+x_2=\frac{3m+2}{2};x_1x_2=\frac{3m+2}{2};\)
Từ đó (i) \(\Leftrightarrow9\left(3m+2\right)+8=0\Leftrightarrow m=-\frac{26}{27}\) thỏa mãn điều kiện (*)
Vậy \(M\left(-\frac{26}{27};0\right)\) là điểm cần tìm
Cho hàm số y = f(x) có đạo hàm đến cấp hai liên tục trên R. Biết rằng các tiếp tuyến với đồ thị y = f(x) tại các điểm có hoành độ x = -1, x = 0, x = 1 lần lượt tạo với chiều dương của trục Ox các góc 30 o , 45 o , 60 o
Tính tích phân I = ∫ - 1 0 f ' x . f ' ' x dx + 4 ∫ 0 1 f ' x 3 . f ' ' x dx .
A. .
B. .
C. .
D. .
Cho hàm số y = f(x) có đạo hàm đến cấp hai liên tục trên R. Biết rằng các tiếp tuyến với đồ thị y = f(x) tại các điểm có hoành độ x = -1, x=0, x=1 lần lượt tạo với chiều dương của trục Ox các góc 30 o , 45 o , 60 o
Tính tích phân I = ∫ - 1 0 f ' x . f ' ' x dx + 4 ∫ 0 1 f ' x 3 . f ' ' x dx .
A. .
B. .
C. .
D. .
Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Giả sử (d) luôn đi qua điểm cố định M(x0; y0)
Ta có: \(y_0=\left(m+5\right)x_0+2m-10\)
<=> \(mx_0+5x_0+2m-10-y_0=0\)
<=> \(m\left(x_o+2\right)+5x_0-y_0-10=0\)
Để M cố định thì: \(\hept{\begin{cases}x_0+2=0\\5x_0-y_0-10=0\end{cases}}\) <=> \(\hept{\begin{cases}x_0=-2\\y_0=-20\end{cases}}\)
Vậy...
Viết phương trình tiếp tuyến của đồ thị hàm số y = 3 x - 2 x - 1 . Biết tiếp tuyến tạo với trục hoành một góc 45 ° .
A. y = - x - 6 hoặc y = - x - 2
B. y = - x + 6 hoặc y = x - 2
C. y = x + 6 hoặc y = x + 2
D. y = - x + 6 hoặc y = - x + 2
Đáp án D.
Tiếp tuyến tạo với trục hoành một góc 45 °
1)Viết phương trình tiếp tuyến của đường cong (C):y=f(x)=x^3-2x biết: a)tiếp tuyến vuông góc với trục Ox. b)Tại giao điểm của (C) với các trục tọa độ.
2)Cho hàm số :y=f(x)=x-1/x có đồ thị là đường cong (C):
a) Viết pt tt với (C),biết tt song song với dt y=2x và tiếp điểm có hoành độ âm.
b)CMR trên (C) không thể tồn tại 2 điểm M,N để tiếp tuyến tại 2 điểm này vuông góc với nhau.
c)CMR mọi tiếp tuyến của (C) đều không thể đi qua gốc tọa độ O.
3)Tìm tất cả các điểm trên đồ thị (C):y=f(x)=(2x+3)/(x+2) sao cho tại điểm đó tt của (C) cắt các đường thằng (d1):x=-2 và (d2):y=2 lần lượt tại A và B sao cho AB gần nhất.
4)Cho hàm số y=f(x)=sin2x+1 (x>=0) và =2x+1 (x<0) .Tính đạo hàm của hàm số tại Xo=0 bằng định nghĩa.
Tìm tất cả những điểm nằm trên trục tung mà từ đó chỉ có thể kẻ được đúng một tiếp tuyến đến đồ thị hàm số \(y=\frac{x+1}{x-1}\)
Xét \(M\left(0;m\right)\in Oy\), đường thẳng d đi qua M, hệ số góc k có phương trình : \(y=kx+m\)
d là tiếp tuyến \(\Leftrightarrow\begin{cases}\frac{x+1}{x-1}=kx+m\\\frac{-2}{\left(x-1\right)^2}=k\end{cases}\) có nghiệm
Thế k vào phương trình thứ nhất, ta được :
\(\frac{x+1}{x-1}=\frac{-2x}{\left(x-1\right)^2}+m\Leftrightarrow\left(m-1\right)x^2-2\left(m+1\right)x+m+1=0\) (*)
Để từ M chỉ kẻ được đúng một tiếp tuyến đến đồ thị hàm số đã cho \(\Leftrightarrow\) (*) có đúng 1 nghiệm.
Do (*) không có nghiêm x = 1 nên (*) có đúng 1 nghiệm
\(\Leftrightarrow\left[\begin{array}{nghiempt}m=1\\\Delta'=2m+2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}m=1\\m=-1\end{array}\right.\)
Vậy có 2 điểm \(M_1\left(0;1\right);M_2\left(0;-1\right)\) thỏa mãn bài toán
Tìm trên đường thẳng y= -2 các điểm kẻ đến đồ thị hàm số y= x3-3x2+2 (C) hai tiếp tuyến vuông góc với nhau.
Cho hàm số \(y=\dfrac{x+1}{x-1}\). Những điểm trên trục hoành không kẻ được tiếp tuyến nào với đồ thị là các điểm có hoành độ x thỏa mãn:
A. \(x< 1\)
B. \(x\le1\)
C. \(x\ge1\)
D. \(x>1\) hoặc \(x=-1\)
\(y'=\dfrac{-2}{\left(x-1\right)^2}\)
Gọi \(M\left(m;0\right)\) là điểm thuộc trục hoành, đường thẳng d qua M có dạng: \(y=k\left(x-m\right)\)
d không là tiếp tuyến của đồ thị khi và chỉ khi:
\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}=k\left(x-m\right)\\k=\dfrac{-2}{\left(x-1\right)^2}\end{matrix}\right.\) vô nghiệm
\(\Rightarrow\dfrac{x+1}{x-1}=\dfrac{-2\left(x-m\right)}{\left(x-1\right)^2}\) vô nghiệm
\(\Rightarrow x^2+2x-2m-1=0\) vô nghiệm
\(\Rightarrow\Delta'=2m+2< 0\Rightarrow m< -1\)
Hay \(x< -1\)
Tất cả các đáp án đều sai