Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Tuấn Kiệt
Xem chi tiết
Đỗ Lê Tú Linh
22 tháng 4 2016 lúc 11:18

x2+2xy+4y2+2xy=6xy+12

x(x+2y)+2y(2y+x)=6xy+12

(x+2y)(x+2y)=6(xy+2)

(x+2y)2=6(xy+2)

= x+2y=xy+2                          và                     x+2y=6

x-xy=2-2y                                                                 2+2y=6

x(1-y)=2(1-y)                                                             2y=6-2=4

nên x=2                                                                     y=4/2=2

Vậy x=2 và y=2

không chắc đâu Kiệt, cậu thử hỏi thầy cô c xem có đúng k, t làm tầm bậy đó,

Hoàng Xuân Ngân
20 tháng 4 2016 lúc 19:46

cái này đc áp dụng hằng đẳng thức hả

Đỗ Lê Tú Linh
22 tháng 4 2016 lúc 11:19

dấu = ở dòng thứ 5 là dấu =>

Võ Quang Huy
Xem chi tiết
Lê Tài Bảo Châu
28 tháng 10 2019 lúc 22:53

Anh ơi em nghĩ phải lả \(+\frac{1}{x+y+z}\)thì mới đúng ạ

Khách vãng lai đã xóa
Lê Tài Bảo Châu
28 tháng 10 2019 lúc 23:01

sửa đề \(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}+\frac{1}{x+y+z}\)

                                giải

Áp dụng bđt cô si cho 3 số dương \(x,y,z\)ta có:

\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}\)

\(\Rightarrow\frac{x^2+1}{x}\ge2;\frac{y^2+1}{y}\ge2;\frac{z^2+1}{z}\ge2\)(1)

Áp dụng bđt bunhiacopxki ta có:

\(\left(x+y+z\right)^2\le\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3^2\)

Mà \(x,y,z\)nguyên dương

\(\Rightarrow x+y+z\le3\)

\(\Rightarrow\frac{1}{x+y+z}\ge\frac{1}{3}\left(2\right)\)

Lấy (1) + (2) ta được:

\(M\ge2+2+2+\frac{1}{3}\)

\(\Rightarrow M\ge\frac{19}{3}\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z\)

Khách vãng lai đã xóa
zZz Cool Kid zZz
29 tháng 10 2019 lúc 0:05

Lê Tài Bảo Châu Đề bài ko sai.

\(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)

Theo ĐL Cool Kid đz luôn có \(\frac{1}{a+b+c}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow M\ge x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow M\ge x+y+z+\frac{8}{9x}+\frac{8}{9y}+\frac{8}{9z}\)

Có BĐT :\(x+\frac{8}{9x}\ge\frac{x^2+33}{18}\Leftrightarrow.......\Leftrightarrow\left(x-1\right)^2\left(16-x\right)\ge0\left(true\right)\)

Tương tự cộng vế theo vế thì \(M\ge\frac{x^2+y^2+z^2+99}{18}=\frac{17}{3}\)

Dấu "=" xảy ra tại \(x=y=z=1\)

Khách vãng lai đã xóa
Phan Cẩm Ly
Xem chi tiết
Phan Cẩm Ly
12 tháng 4 2019 lúc 21:23

Xin đấy làm ơn đi sáng mai mình phải đi học rồi

Khiêm 6A5
12 tháng 4 2019 lúc 21:29

chẳng hiểu gì cả

Đỗ Thị Dung
13 tháng 4 2019 lúc 12:14

mik có nè,h bn cần ko để mik gửi

chung lê đức
Xem chi tiết
Đinh Đức Hùng
9 tháng 12 2017 lúc 14:11

\(x^2+2xy+4x+4y+3y^2+3=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+4+2y^2-1=0\)

\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4=1-2y^2\)

\(\Leftrightarrow\left(x+y+2\right)^2=1-2y^2\)

Do  \(VP=1-2y^2\le1\forall y\) nên \(VT=\left(x+y+2\right)^2\le1\)

\(\Leftrightarrow-1\le x+y+2\le1\)

\(\Leftrightarrow-1+2015\le x+y+2+2015\le1+2015\)

\(\Leftrightarrow2014\le x+y+2017\le2016\)

Hay \(2014\le B\le2016\)

Tầm Tầm
24 tháng 12 2017 lúc 16:32

Bạn Đinh Đức Hùng cho tớ hỏi được không ạ ?

Cái chỗ do Vp = 1- 2y^2 nên ...

Bên trên là dương 1 sao ở đưới lại là -1 ạ? Tớ chưa hiểu chỗ này, mong cậu giảng cho tớ :< pls !

nguyen trong hieu
14 tháng 3 2018 lúc 0:10

Chuyển vế nhé bạn Tầm Tầm

Nguyễn Thị Minh Thảo
Xem chi tiết
Đỗ Thị Dung
Xem chi tiết
Chung Nguyễn Thành
Xem chi tiết
Sherry
28 tháng 12 2017 lúc 20:56

Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0

--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0

--> (x+y+2)^2 + y^2 = 1

-->(x+y+2)^2 <= 1 ( vì y^2 >=1)

--> -1 <= x+y+2 <=1

--> 2015 <= x+y+2018 <= 2017

hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3

Q<=2017, dau bang xay ra khi  x+y+2=1 --> x+y=-1

Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3

 giá trị lớn nhất của Q là 2017 khi x+y=-1

Le Thi Phuong Anh
14 tháng 5 2020 lúc 14:20

giá trị lớn nhất là 2017

Khách vãng lai đã xóa
Nguyễn Thu Huyền
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Đoàn Đức Hà
24 tháng 10 2021 lúc 8:37

\(P=\frac{xy+x+y+2}{x+y+2}=\frac{xy}{x+y+2}+1\)

Đặt \(Q=\frac{x+y+2}{xy}=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\)

Ta có: \(4=x^2+y^2\ge2xy\Leftrightarrow xy\le2\)

\(\left(x+y\right)^2\le2\left(x^2+y^2\right)=8\Rightarrow x+y\le2\sqrt{2}\)

\(Q=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\ge\frac{4}{x+y}+\frac{2}{xy}\ge\frac{4}{2\sqrt{2}}+\frac{2}{2}=1+\sqrt{2}\)

Suy ra \(P\le\frac{1}{1+\sqrt{2}}+1=\frac{\sqrt{2}-1}{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}+1=\sqrt{2}\).

Dấu \(=\)khi \(x=y=\sqrt{2}\).

Khách vãng lai đã xóa
Lê Mạnh Hùng
24 tháng 10 2021 lúc 8:41

TL:

P=xy+x+y+2x+y+2 =xyx+y+2 +1

Đặt Q=x+y+2xy =1x +1y +2xy 

Ta có: 4=x2+y2≥2xy⇔xy≤2

(x+y)2≤2(x2+y2)=8⇒x+y≤2√2

Q=1x +1y +2xy ≥4x+y +2xy ≥42√2 +22 =1+√2

Suy ra P≤11+√2 +1=√2−1(1+√2)(√2−1) +1=√2.

Dấu  = khi x=y=√2.

^HT^

Khách vãng lai đã xóa