Tính tích phân : \(I=\int\limits_{\frac{-1}{2}}^0\frac{dx}{\left(x+1\right)\sqrt{3+2x-x^2}}\)
2.Tính các tích phân sau:
a)
b)
1. Giải các hệ phương trình sau: (mọi người ghi phương pháp tổng quát cách làm và làm cụ thể ra cho mình với nhé.)
a)
b)
c)
d)
e)
f)
2.Tính các tích phân sau:
a)
b)
c)
d)
e)
f)
g)
h)
i) Cho số thực a>ln2. Tính và từ đó suy ra
k)
l) Cho hàm số: . Tìm a, b biết: và
m)
n)
p)
q)
r)
s)
t)
u)
v)
w)
a,\(\int\limits^{\frac{\Pi}{6}}_0\frac{sin\left(2x+x\right)}{cos^2x}dx=\int\limits^{\frac{\Pi}{6}}_0\frac{sin2x.cosx+cos2x.sinx}{cos^2x}dx=\int\limits^{\frac{\Pi}{6}}_0\frac{2cos^2x.sinx+\left(2cos^2x-1\right)sinx}{cos^2x}dx=\int\limits^{\frac{\Pi}{6}}_0\frac{4cos^2x.sinx}{cos^2x}dx+\int\limits^{\frac{\Pi}{6}}_0\frac{d\left(cosx\right)}{cos^2x}=\int\limits^{\frac{\Pi}{6}}_0sinxdx-\frac{1}{cosx}\)
thay cận vào nhé
b)=\(\int\limits^8_4\frac{x\sqrt{x^2-16}}{x^2}dx\)
đặt \(\sqrt{x^2-16}=t\Rightarrow t^2=x^2-16\Rightarrow xdx=tdt\)và \(x^2=t^2+16\)
đổi cân thay vào ta có
\(\int\limits^{4\sqrt{3}}_0\frac{tdt}{t^2+16}=\frac{1}{2}\int\limits^{4\sqrt{3}}_0\frac{d\left(t^2+16\right)}{t^2+16}=\frac{1}{2}ln\left(t^2+16\right)\)
thay cận vào là xong
1) \(\int ln\frac{\left(1+s\text{inx}\right)^{1+c\text{os}x}}{1+c\text{os}x}dx\)
2) \(\int\left(xlnx\right)^2dx\)
3) \(\int\frac{3xcosx+2}{1+cot^2x}dx\)
4)\(\int\frac{2}{c\text{os}2x-7}dx\)
5)\(\int\frac{1+x\left(2lnx-1\right)}{x\left(x+1\right)^2}dx\)
6) \(\int\frac{1-x^2}{\left(1+x^2\right)^2}dx\)
7)\(\int e^x\frac{1+s\text{inx}}{1+c\text{os}x}dx\)
8) \(\int ln\left(\frac{x+1}{x-1}\right)dx\)
9)\(\int\frac{xln\left(1+x\right)}{\left(1+x^2\right)^2}dx\)
10) \(\int\frac{ln\left(x-1\right)}{\left(x-1\right)^4}dx\)
11)\(\int\frac{x^3lnx}{\sqrt{x^2+1}}dx\)
12)\(\int\frac{xe^x}{_{ }\left(e^x+1\right)^2}dx\)
13) \(\int\frac{xln\left(x+\sqrt{1+x^2}\right)}{x+\sqrt{1+x^2}}dx\)
giúp mk đc con nào thì giúp nha
Câu 2)
Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)
Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)
Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)
Câu 3:
\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)
Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)
\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)
Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)
Câu 6)
\(I=-\int \frac{\left ( 1-\frac{1}{x^2} \right )dx}{x^2+2+\frac{1}{x^2}}=-\int \frac{d\left ( x+\frac{1}{x} \right )}{\left ( x+\frac{1}{x} \right )^2}=-\frac{1}{x+\frac{1}{x}}+c=-\frac{x}{x^2+1}+c\)
Câu 8)
\(I=\int \ln \left(\frac{x+1}{x-1}\right)dx=\int \ln (x+1)dx-\int \ln (x-1)dx\)
\(\Leftrightarrow I=\int \ln (x+1)d(x+1)-\int \ln (x-1)d(x-1)\)
Xét \(\int \ln tdt\) ta có:
Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln tdt=t\ln t-\int dt=t\ln t-t+c\)
\(\Rightarrow I=(x+1)\ln (x+1)-(x+1)-(x-1)\ln (x-1)+x-1+c\)
\(\Leftrightarrow I=(x+1)\ln(x+1)-(x-1)\ln(x-1)+c\)
Tính tích phân bất định hàm số hữu tỉ sau :
a) \(\int\frac{dx}{\sqrt{\left(1-x^2\right)^3}}\)
b) \(\int\frac{dx}{\sqrt{x^2+2x+3}}\)
a) Đặt \(x=\sin t;t\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\) \(\Rightarrow dx=\cos tdt\)
Suy ra : \(\frac{dx}{\sqrt{\left(1-x^2\right)^3}}=\frac{\cos tdt}{\sqrt{\left(1-\sin^2t\right)^3}}=\frac{\cos tdt}{\cos^3t}=\frac{dt}{\cos^2t}=d\left(\tan t\right)\)
Khi đó \(\int\frac{dx}{\sqrt{\left(1-x^2\right)^3}}=\int d\left(\tan t\right)=\tan t+C=\frac{\sin t}{\sqrt{1-\sin^2t}}=\frac{x}{\sqrt{1-x^2}}+C\)
b) Vì \(x^2+2x+3=\left(x+1\right)^2+\left(\sqrt{2}\right)^2\)
nên ta đặt : \(x+1=\sqrt{2}\tan t;t\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\Rightarrow dx=\sqrt{2}.\frac{dt}{\cos^2t};\tan t=\frac{x+1}{\sqrt{2}}\)
Suy ra \(\frac{dx}{\sqrt{x^2+2x+3}}=\frac{dx}{\sqrt{\left(x^2+1\right)^2+\left(\sqrt{2}\right)^2}}=\frac{dx}{\sqrt{2\left(\tan^2t+1\right).\cos^2t}}\)
\(=\frac{dt}{\sqrt{2}\cos t}=\frac{1}{\sqrt{2}}.\frac{\cos tdt}{1-\sin^2t}=-\frac{1}{2\sqrt{2}}.\left(\frac{\cos tdt}{\sin t-1}-\frac{\cos tdt}{\sin t+1}\right)\)
Khi đó \(\int\frac{dx}{\sqrt{x^2+2x+3}}=-\frac{1}{2\sqrt{2}}\int\left(\frac{\cos tdt}{\sin t-1}-\frac{\cos tdt}{\sin t+1}\right)=-\frac{1}{2\sqrt{2}}\ln\left|\frac{\sin t-1}{\sin t+1}\right|+C\left(1\right)\)
Từ \(\tan t=\frac{x+1}{\sqrt{2}}\Leftrightarrow\tan^2t=\frac{\sin^2t}{1-\sin^2t}=\frac{\left(x+1\right)^2}{2}\Rightarrow\sin^2t=1-\frac{2}{x^2+2x+3}\)
Ta tìm được \(\sin t\) thay vào (1), ta tính được I
Tính các tích phân sau
1.I=\(\int\limits^{\frac{\Pi}{4}}_0\) (x+1)sin2xdx
2.I=\(\int\limits^2_1\frac{x^2+3x+1}{x^2+x}dx\)
3.I=\(\int\limits^2_1\frac{x^2-1}{x^2}lnxdx\)
4. I=\(\int\limits^1_0x\sqrt{2-x^2}dx\)
5.I=\(\int\limits^1_0\frac{\left(x+1\right)^2}{x^2+1}dx\)
6. I=\(\int\limits^5_1\frac{dx}{1+\sqrt{2x-1}}\)
7. I=\(\int\limits^3_1\frac{1+ln\left(x+1\right)}{x^2}dx\)
8.I=\(\int\limits^1_0\frac{x^3}{x^4+3x^2+2}dx\)
9. I=\(\int\limits^{\frac{\Pi}{4}}_0x\left(1+sin2x\right)dx\)
10. I=\(\int\limits^3_0\frac{x}{\sqrt{x+1}}dx\)
Tính tích phân bất định :
\(I=\int\frac{dx}{\sqrt{\left(1+x^2\right)^3}}\)
Tính tích phân sau :
\(I=\int\limits^5_1\left(\frac{x}{\sqrt{x-1}+1}+\frac{\ln x}{\left(x+1\right)^2}\right)dx\)
\(I=\int\limits^5_1\left(\frac{x}{\sqrt{x-1}+1}+\frac{\ln x}{\left(x+1\right)^2}\right)dx=\int\limits^5_1\frac{x}{\sqrt{x-1}+1}dx+\int\limits^5_1\frac{\ln x}{\left(x+1\right)^2}dx\)
- Tính \(\int\limits^5_1\frac{x}{\sqrt{x-1}+1}dx\)
Đặt \(t=\sqrt{x-1}\Rightarrow t^2=x-1\Leftrightarrow x=t^2+1\Rightarrow dx=2tdt\)
Đổi cận : Cho x=1 => t=0; x=5=>t=2
\(I_1=\int\limits^2_0\frac{t^2+1}{t+1}.2td=\int\limits^2_0\frac{2t^3+2t}{t+1}dt=\int\limits^2_0\left(2t^2-2t+4-\frac{4}{t+1}\right)dt\)
\(=\left(\frac{2}{3}t^3-t^2+4t-4\ln\left|x+1\right|\right)|^2_0=\frac{28}{3}-4\ln3\)
\(I_2=\int\limits^5_1\frac{\ln x}{\left(x+1\right)^2}dx\)
Đặt \(\begin{cases}u=\ln x\\dv=\frac{1}{\left(x+1\right)^2}dx\end{cases}\) \(\Rightarrow\begin{cases}du=\frac{1}{x}dx\\v=-\frac{1}{x+1}\end{cases}\)
Ta có \(I_2=-\frac{1}{x+1}\ln x|^5_1+\int\limits^5_1\frac{1}{x\left(x+1\right)}dx=-\frac{1}{6}\ln5+\int\limits^5_1\left(\frac{1}{x}-\frac{1}{x+1}\right)dx\)
\(=-\frac{1}{6}\ln5+\left(\ln\left|x\right|x+1\right)|^5_1=-\frac{1}{6}\ln5+\ln5-\ln6+\ln2=\frac{5}{6}\ln5-\ln3\)
Khi đó \(I=I_1+I_2=\frac{28}{3}+\frac{5}{6}\ln5=5\ln3\)
1) \(\int\left(\frac{lnx}{2+lnx}\right)^2\)
2) \(\int\frac{dx}{\left(x+3\right)^3\left(x+5\right)^5}\)
3) \(\int\frac{xdx}{\sqrt{1+\sqrt[3]{x^2}}}\)
4) \(\int\frac{dx}{x^3.\sqrt[3]{2-x^3}}\)
5)\(\int\sqrt[3]{\frac{2-x}{2+x}}.\frac{1}{\left(2-x\right)^2}dx\)
1) Đặt \(2+lnx=t\Leftrightarrow x=e^{t-2}\Rightarrow dx=e^{t-2}dt\)
\(I_1=\int\left(\frac{t-2}{t}\right)^2\cdot e^{t-2}\cdot dt=\int\left(1-\frac{4}{t}+\frac{4}{t^2}\right)e^{t-2}dt\\ =\int e^{t-2}dt-4\int\frac{e^{t-2}}{t}dt+4\int\frac{e^{t-2}}{t^2}dt\)
Có:
\(4\int\frac{e^{t-2}}{t^2}dt=-4\int e^{t-2}\cdot d\left(\frac{1}{t}\right)=-\frac{4\cdot e^{t-2}}{t}+4\int\frac{e^{t-2}}{t}dt\\ \Leftrightarrow4\int\frac{e^{t-2}}{t^2}dt-4\int\frac{e^{t-2}}{t^{ }}dt=-\frac{4\cdot e^{t-2}}{t}\)
Vậy \(I_1=\int e^{t-2}dt-\frac{4\cdot e^{t-2}}{t}=e^{t-2}-\frac{4e^{t-2}}{t}+C\)
3) Đặt \(t=\sqrt{1+\sqrt[3]{x^2}}\Rightarrow t^2-1=\sqrt[3]{x^2}\Leftrightarrow x^2=\left(t^2-1\right)^3\)
\(d\left(x^2\right)=d\left[\left(t^2-1\right)^3\right]\Leftrightarrow2x\cdot dx=6t\left(t^2-1\right)^2\cdot dt\)
\(I_3=\int\frac{3t\left(t^2-1\right)^2}{t}dt=3\int\left(t^4-2t^2+1\right)dt=...\)
5) Đặt \(\frac{2+x}{2-x}=4t^3\Leftrightarrow4t^3=\frac{4}{2-x}-1\)
\(d\left(4t^3\right)=d\left(\frac{4}{2-x}-1\right)\Leftrightarrow3t^2dt=\frac{1}{\left(2-x\right)^2}dx\)
\(I_5=\int\frac{3t^2}{t\sqrt[3]{4}}dt=\frac{3}{\sqrt[3]{4}}\int tdt=...\)
1/ I=\(\int\limits^1_0\)\(\frac{dx}{\sqrt{3+2x-x^2}}\)
2/J=\(\int\limits^1_0\)\(xln\left(2x+1\right)dx\)
3/K=\(\int\limits^3_2ln\left(x^3-3x+2\right)dx\)
4/I=\(\int\limits^{\frac{\pi}{6}}_0\)\(\frac{tan^4xdx}{cos2x}\)
5/J=\(\int\limits^3_1\)\(\frac{3+lnx}{\left(x+1\right)^2}dx\)
6/K=\(\int\limits^1_0\)\(\frac{\left(2+xe^x\right)}{x^2+2x+1}dx\)
Câu 1)
Ta có \(I=\int ^{1}_{0}\frac{dx}{\sqrt{3+2x-x^2}}=\int ^{1}_{0}\frac{dx}{4-(x-1)^2}\).
Đặt \(x-1=2\cos t\Rightarrow \sqrt{4-(x-1)^2}=\sqrt{4-4\cos^2t}=2|\sin t|\)
Khi đó:
\(I=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{d(2\cos t+1)}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{2\sin tdt}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}dt=\left.\begin{matrix} \frac{2\pi}{3}\\ \frac{\pi}{2}\end{matrix}\right|t=\frac{\pi}{6}\)
Câu 3)
\(K=\int ^{3}_{2}\ln (x^3-3x+2)dx=\int ^{3}_{2}\ln [(x+2)(x-1)^2]dx\)
\(=\int ^{3}_{2}\ln (x+2)d(x+2)+2\int ^{3}_{2}\ln (x-1)d(x-1)\)
Xét \(\int \ln tdt\): Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln t dt=t\ln t-t\)
\(\Rightarrow K=\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x+2)[\ln (x+2)-1]+2\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x-1)[\ln (x-1)-1]\)
\(=5\ln 5-4\ln 4-1+4\ln 2-2=5\ln 5-4\ln 2-3\)
Bài 2)
\(J=\int ^{1}_{0}x\ln (2x+1)dx\). Đặt \(\left\{\begin{matrix} u=\ln (2x+1)\\ dv=xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2dx}{2x+1}\\ v=\frac{x^2}{2}\end{matrix}\right.\)
Khi đó:
\(J=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2\ln (2x+1)}{2}-\int ^{1}_{0}\frac{x^2}{2x+1}dx\)\(=\frac{\ln 3}{2}-\frac{1}{4}\int ^{1}_{0}(2x-1+\frac{1}{2x+1})dx\)
\(=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2-x}{4}-\frac{1}{8}\int ^{1}_{0}\frac{d(2x+1)}{2x+1}=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{\ln (2x+1)}{8}\)
\(=\frac{\ln 3}{2}-\frac{\ln 3}{8}=\frac{3\ln 3}{8}\)
Câu 5)
\(J=\underbrace{\int ^{3}_{1}\frac{3dx}{(x+1)^2}}_{A}+\underbrace{\int ^{3}_{1}\frac{\ln xdx}{(x+1)^2}}_{B}\)
Ta có: \(A=\int ^{3}_{1}\frac{3d(x+1)}{(x+1)^2}=\left.\begin{matrix} 3\\ 1\end{matrix}\right|\frac{-3}{x+1}=\frac{3}{4}\)
\(B=\int ^{3}_{1}\frac{\ln xdx}{(x+1)^2}=\left.\begin{matrix} 3\\ 1\end{matrix}\right|\frac{-\ln x}{x+1}+\int ^{3}_{1}\frac{dx}{x(x+1)}=\frac{-\ln 3}{4}+\left.\begin{matrix} 3\\ 1\end{matrix}\right|(\ln |x|-\ln|x+1|)\)
\(B=\frac{-\ln 3}{4}+(\ln 3-\ln 4)+\ln 2=\frac{3}{4}\ln 3-\ln 2\)