Chứng minh rằng 3n:2 = 2
chứng minh rằng: 1.4+4.7+7.10+...+(3n-2)(3n+1)=n(n+1)2
bài này đề sai bạn ạ: Vp=3n^3+3n^2-2n mới đúng
Cho n là số nguyên dương. Chứng minh rằng:
\(A=2^{3n-1}+2^{3n+1}+1 \) chia hết cho 7
Do n nguyên dương, đặt \(n=m+1\) với m là số tự nhiên
\(\Rightarrow A=2^{3\left(m+1\right)-1}+2^{3\left(m+1\right)+1}+1=2^{3m+2}+2^{3\left(m+1\right)+1}+1\)
\(=4.8^m+2.8^{m+1}+1\)
Do \(8\equiv1\left(mod7\right)\Rightarrow\left\{{}\begin{matrix}8^m\equiv1\left(mod7\right)\\8^{m+1}\equiv1\left(mod7\right)\end{matrix}\right.\)
\(\Rightarrow4.8^m+2.8^{m+1}+1\equiv4+2+1\left(mod7\right)\)
\(\Rightarrow4.8^m+2.8^{m+1}+1⋮7\)
chứng minh rằng (n+1).(3n+2):2
chứng minh rằng (n+1).(3n+2)\(⋮\)2
Ta có: (n + 1).(3n + 2) \(=3\cdot n^2+2n+3n+2\)
\(=3\cdot n^2+5n+2\)
\(=n\left(3n+5\right)+2\)
Tiếp tục xét 2 trường hợp chẵn, lẻ
Vậy.....
chứng minh rằng 2- 3n/ 3n -1 thuộc N là phân số tối giản
Gọi UCLN của 2 số đó là d
2-3n chia hết cho d
3n-1 chia hết cho d
2-3n+3n-1 chia hết chod
1 chia hết cho d
d=1
2-3n/3n-1 tối giản
Thuộc Z nha mọi gười (ghi lộn)
Chứng minh rằng với mọi số tự nhiên n ≥ 2 , ta có bất đẳng thức: 3 n > 3 n + 1
Chứng minh: 3n > 3n + 1 (1)
+ Với n = 2 thì (1) ⇔ 9 > 7 (luôn đúng).
+ Giả sử (1) đúng với n = k ≥ 2, tức là 3k > 3k + 1.
Ta chứng minh đúng với n= k+1 tức là chứng minh: 3k+ 1 > 3(k+1) + 1
Thật vậy, ta có:
3k + 1 = 3.3k > 3.(3k + 1) (Vì 3k > 3k + 1 theo giả sử)
= 9k + 3
= 3k + 3 + 6k
= 3.(k + 1) + 6k
> 3(k + 1) + 1.( vì k ≥ 2 nên 6k ≥ 12> 1)
⇒ (1) đúng với n = k + 1.
Vậy 3n > 3n + 1 đúng với mọi n ≥ 2.
Bài 1 :
Tìm chữ số tận cùng của số A = 3n+2 - 2n+2 + 3n - 2n
Bài 2:
Chứng minh rằng : nếu (d+2c+4b) chia hết cho 8 thì abcd chia hết cho 8
Bài 3 : Cho C= 2+22 + 23 +......+ 299 + 2100
a) Chứng minh rằng C chia hết cho 31
b) Tìm x để 22x - 2 = C
Bài 3:
a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Bài 1:
Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy: A có chữ số tận cùng là 0
Bài 2:
Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)
\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)
\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)
mà \(8\left(125a+12b+c\right)⋮8\)
và \(2c+4b+d⋮8\)
nên \(abcd⋮8\)(đpcm)
chứng minh rằng 3n+2-2n+4+3n+2n chi hết cho 30 với mọi số tự nhiên n
\(3^{n+2}-2^{n+4}+3^n+2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+4}-2^n\right)=\left(3^n.9+3^n\right)-\left(2^n.16-2^n\right)=3^n.\left(9+1\right)-2^n.\left(16-1\right)=3^n.10-2^n.15=3^{n-1}.3.10-2^{n-1}.2.15=3^{n-1}.30-2^{n-1}.30=30.\left(3^{n-1}-2^{n-1}\right)\)
Vì \(30⋮30=>30.\left(3^{n-1}-2^{n-1}\right)⋮30=>3^{n+2}-2^{n+4}+3^n+2^n⋮30\)
1.Chứng minh rằng \(2^{2^{6n+2}}+3⋮19\) với ,mọi n\(\in\)N
2.Chứng minh rằng với n>0 ta có 52n-1.22n-15n+1+3n+1.22n-1 chia hết cho 38
chứng minh rằng mỗi phân số sau đều tối giản với mọi số n
a)\(\dfrac{2n+1}{3n+2}\)
b) \(\dfrac{3n+2}{5n+3}\)
a: Gọi d=UCLN(2n+1;3n+2)
\(\Leftrightarrow6n+4-6n-3⋮d\)
=>d=1
=>Phân số tối giản
b: Gọi d=UCLN(3n+2;5n+3)
\(\Leftrightarrow15n+10-15n-9⋮d\)
=>d=1
=>Phân số tối giản