Tìm các số nguyên dương thỏa mãn
a) \(\left(x+2\right)y^2+1=x\)
b) x+y+z=2xyz
Tìm tất cả các bộ ba số nguyên \(\left(x,y,z\right)\) thỏa mãn
\(2\left(x+y+z+2xyz\right)^2=\left(2xy+2yz+2zx+1\right)^2+2023\)
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Cho x,y,z là các số thực dương thỏa: xy + yz + zx = 2xyz
Tìm MIn của \(P=\frac{x}{z\left(z+x\right)}+\frac{y}{x\left(x+y\right)}+\frac{z}{y\left(y+z\right)}\)
Em thử, sai thì thôi nha, chỗ đặt xong rồi thay vào P em ko biết mình có tính đúng hay sai nữa!
giả thiết \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\).
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\) thì a + b + c = 2; a, b, c > 0 và:
\(P=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{2}{2}=1\)
Đẳng thức xảy ra khi a = b = c = 2/3 hay \(x=y=z=\frac{3}{2}\)
Tìm các số x,y,z nguyên dương thỏa mãn đẳng thức:\(2\left(y+z\right)=x\left(yz-1\right)\)
Tìm các số x,y,z nguyên dương thỏa mãn đẳng thức:\(2\left(y+z\right)=x\left(yz-1\right)\)
Tìm các số x,y,z nguyên dương thỏa mãn đẳng thức:
\(2\left(y+z\right)=x\left(yz-1\right)\)
ta có:2(y+z)=x(yz-1)
=>2y+2z=xyz-x
=>2y+2z+x=xyz
mik ko làm tiếp đc do thiếu đ/k
Tìm tất cả các số thực dương x,y,z thỏa mãn :
\(\left(1+\dfrac{x}{y+z}\right)^2+\left(1+\dfrac{y}{x+z}\right)^2+\left(1+\dfrac{z}{x+y}\right)^2=\dfrac{27}{4}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$\text{VT}(1^2+1^2+1^2)\geq (1+\frac{x}{y+z}+1+\frac{y}{x+z}+1+\frac{z}{x+y})^2$
$\Leftrightarrow 3\text{VT}\geq (3+\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y})^2$
$ = \left[3+\frac{x^2}{xy+xz}+\frac{y^2}{yz+yx}+\frac{z^2}{zy+zx}\right]^2$
$\geq \left[3+\frac{(x+y+z)^2}{2(xy+yz+xz)}\right]^2$
$\geq \left[3+\frac{3(xy+yz+xz)}{2(xy+yz+xz)}\right]^2=\frac{81}{4}$
$\Rightarrow \text{VT}\geq \frac{27}{4}$
Dấu "=" xảy ra khi $x=y=z>0$
Áp dụng BĐT Bunhiacopxky:
Dấu "=" xảy ra khi
1 Cho x;y;z là các số thực dương thỏa mãn xy+yz+xz=2xyz. Tìm GTNN của\(P=\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}+3\cdot\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
2 Cho x;y;z là các số thực dương thỏa mãn: \(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}=1\) CMR : \(x+y+z\ge2\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
3 Cho \(a;b;c>0\) thỏa mãn : \(a^2+b^2+c^2=1\) Tìm Min của \(P=\frac{a}{\left(1-a^4\right)^2}+\frac{b}{\left(1-b^4\right)^2}+\frac{c}{\left(1-c^4\right)^2}\)
Help me. thanks
Cho x; y; z là các số thực dương thỏa mãn: \(x^2+y^2+z^2+2xyz=1\)
Tìm max của \(A=xy+yz+zx-xyz\)
Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có 2 số cùng phía so với \(\dfrac{1}{2}\)
Không mất tính tổng quát, giả sử đó là y và z
\(\Rightarrow\left(y-\dfrac{1}{2}\right)\left(z-\dfrac{1}{2}\right)\ge0\Leftrightarrow yz-\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{4}\ge0\)
\(\Leftrightarrow y+z-yz\le\dfrac{1}{2}+yz\)
Mặt khác từ giả thiết:
\(1-x^2=y^2+z^2+2xyz\ge2yz+2xyz\)
\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge2yz\left(1+x\right)\)
\(\Leftrightarrow1-x\ge2yz\)
\(\Rightarrow yz\le\dfrac{1-x}{2}\)
Do đó:
\(A=yz+x\left(y+z-yz\right)\le yz+x\left(\dfrac{1}{2}+yz\right)=\dfrac{1}{2}x+yz\left(x+1\right)\le\dfrac{1}{2}x+\left(\dfrac{1-x}{2}\right)\left(x+1\right)\)
\(\Rightarrow A\le-\dfrac{1}{2}x^2+\dfrac{1}{2}x+\dfrac{1}{2}=-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{8}\le\dfrac{5}{8}\)
\(A_{max}=\dfrac{5}{8}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)