Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Miner Đức
Xem chi tiết
Hoàng Thùy Linh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 2 2018 lúc 13:48

Giải bài 1 trang 59 sgk Hình học 10 | Để học tốt Toán 10

+ Ĉ + B̂ = 90º ⇒ Ĉ = 90º - B̂ = 90º – 58º = 32º

+ b = a.sinB = 72 . sin 58º ≈ 61,06 cm

+ c = a . cos B = 72 . cos 58º ≈ 38,15cm

+ ha = c . sin B = 38,15 . sin 58º = 32,36 cm.

Hòa Lê Minh
Xem chi tiết
lê thị bích ngọc
23 tháng 6 2017 lúc 8:19

a, \(vì\)AD là phân giác suy ra góc BAD =góc DAC =45 ĐỘ

cos45 độ = AD/AB =4 /AB =1/ căn 2 suy ra AB =4 NHÂN CĂN 2

TH TỰ dùng sin 45 độ =dc/ac =5/ad =1/căn 2 suy ra AC =5 CĂN 2  ÁP DỤNG PITA GO TÌM RA CẠNH bc 

b,

Hòa Lê Minh
23 tháng 6 2017 lúc 8:35

sao lại \(\frac{1}{\sqrt{2}}\) ?

lekhoi
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 23:33

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=4^2+5^2=41\)

hay \(BC=\sqrt{41}\left(cm\right)\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{4^2}{\sqrt{41}}=\dfrac{16\sqrt{41}}{41}\left(cm\right)\\CH=\dfrac{5^2}{\sqrt{41}}=\dfrac{25\sqrt{41}}{41}\left(cm\right)\end{matrix}\right.\)

c) Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AH^2=4^2-\left(\dfrac{16\sqrt{41}}{41}\right)^2=\dfrac{400}{41}\)

hay \(AH=\dfrac{20\sqrt{41}}{41}\left(cm\right)\)

Lương Thanh Thảo
Xem chi tiết
Nguyễn Xuân Trường Kiên
5 tháng 6 2017 lúc 7:44

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

Nguyễn Thị Bích Ngọc
9 tháng 7 2019 lúc 18:35

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

lekhoi
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 13:34

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=15^2-9^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)

hay AH=7,2(cm)

lekhoi
Xem chi tiết
Higashi Mika
Xem chi tiết

Xét \(\Delta\)ABC có : 

AH2 = BH.CH 

AH2 = c'.b' (1)

Mà c'/b' = 1/3 

=》3c' = b 

Thay vào (1) ta có : 

12 = c'.3c' 

12 = 3c'2 

c'2 = 4 

=》 c' = 2 (cm)

=》b' = 3.2 = 6(cm)

=》 BC = 2 + 6 = 8 (cm)

Ta có : AB2 = BH.BC = 2.8 = 16 

=》 AB = 4(cm)

Lại có AC2 = CH.BC = 6.8 = 48(cm)

=》 AC = 4\(\sqrt{ }\)3 (cm)

Khách vãng lai đã xóa
Quynh Existn
Xem chi tiết
Nguyễn Huy Tú
16 tháng 7 2021 lúc 15:08

undefined

Bùi Võ Đức Trọng
16 tháng 7 2021 lúc 15:12

Áp dụng định lí pi ta go 

=> AB2 + AC2 = 289

Mà \(\dfrac{AB}{AC}\) = \(\dfrac{8}{15}\)=> (\(\dfrac{AB}{AC}\))2\(\dfrac{64}{225}\)

=> AC2=225 => AC = 15 => AB = 8

Ta có: AB.AC=BC . AH

=> AH = 120/17=7.06

=>BH = 3.76

=> CH = 13.24

Đúng thì like giúp mik nha bạn. Thx bạn