Chứng minh rằng A= \(10^{\left\{n\right\}}\)+18n -1 chia hết cho 27( n là số tự nhiên)
Chứng minh rằng số A = 10^n + 18n - 1 chia hết cho 27 ( n là số tự nhiên )
ta sẽ chứng minh bằng quy nạp
Xét n=1 ta có : \(10^n+18n-1=27\text{ chia hết cho 27}\)
Giả sử điều kiện đúng tới n hay \(10^n+18n-1\text{ chia hết cho 27}\)
Xét tại n+1 ta có \(10^{n+1}+18\left(n+1\right)-1=10\times10^n+18n+17=10\times\left(10^n+18n-1\right)-162n+27\)
Dễ thấy \(10^n+18n-1\text{ chia hết cho 27}\) và \(-162n+27=27\times\left(-6n+1\right)\text{ chia hết cho 27}\)
Do đó điều kiện đúng với n+1
Theo nguyên lý quy nạp thì A chia hết cho 27 với mọi số tự nhiên n
Chứng minh rằng: A= 10^n+18n-1 chia hết cho 27( n là số tự nhiên)
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
Tick nhé
Chứng minh rằng: 10n + 18n -1 chia hết cho 27[với n là số tự nhiên]
10n+18n-1
=10n-1-9n+27n
=99..9-9n+27n=9(11..1-n)+27n
n số 9 n số 1
vì 11...1(n số 1) có tổng các chữ số =n =>11..1-n chia hết cho 3
n số 1
=>9(11...1-n) chia hết cho 27 10n+18n-1 chia hết cho 27(đpcm)
n số 1
Ta có :
10n + 18n - 1 = 1000...00 (n số 0) + 18n - 1
= (100...00 - 1) +18n
= 999...999 (n số 9) + 18n
Vì :
999...999 +18n = 3 x 333...333 (n số 3) + 3 x 6n = 3(333...333 + 6n)chia hết cho 3999...999 +18n = 9 x 111...111 (n số 1) + 9 x 2n = 3(111...111 + 2n)chia hết cho 9Vì 9 x 3 = 27 nên 999...999 + 18n chia hết cho 27
\(\Rightarrow\)10n + 18n - 1 chia hết cho 27
Chứng minh rằng: A =10\(^n\) +18n-1 chia hết cho 27 ( n là số tự nhiên)
A = 10n + 18n - 1
A = 10n - 1 - 9n + 27n
A = 99...9 - 9n + 27n
n chữ số 9
A = 9.(11...1 - n) + 27n
n chữ số 1
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => 11..1 - n chia hết cho 3
n chữ số 1
=> 9.(11...1 - n) chia hết cho 27 mà 27n chia hết cho 27
n chữ số 1
=> đpcm
Chứng minh rằng biểu thức 10n +18n-1 chia hết cho 27 với n là số tự nhiên.
Chứng minh quy nạp theo n
\(10^n+18n-1⋮27\)
+) với n = 0 ta có: \(10^0+18.0-1=0⋮27\)
=> (1) đúng với n =0
+) g/s (1) đúng cho tới n ( với n là số tư nhiên )
+) ta chứng minh (1) đúng với n + 1
Ta có: \(10^{n+1}+18\left(n+1\right)-1=10.10^n+18n+17=10\left(10^n+18n-1\right)-10.18n+10+18n+17\)
\(=10\left(10^n+18n-1\right)-9.18n+27⋮27\)
=> ( 1) đúng với n + 1
Vậy (1) đúng với mọi số tự nhiên n
chứng minh rằng:
A=10^n+18n-1 chia hết cho 27(n là số tựu nhiên)
Ta có : 10^n + 18n - 1 = 10^n - 1 - 9n + 27n
= 999....99 (nchu so 9) - 9n + 27n
=9 . (111......111 - n ) + 27n
Vì n và so co tong cac chu so bang n khi chia cho 9 deu co cung so du nen hieu cua chung chia het cho 9
Suy ra 111....111 (n chu so 1 ) - n chia het cho 9
Suy ra ( 111....111 - n ) . 9 chia het cho 9 vi 9 chia het cho 3
Mà 27n chia het cho 27 nen suy ra 10^n + 18n - 1 chia het cho 27
lik-e cho mình nhé bạn
Chứng minh 10n.18n - 1 chia hết cho 27 ( với n là số tự nhiên )
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
Xin lỗi nha đề sai :
đề đúng đây :
Chứng minh 10n+18n - 1 chia hết cho 27 ( với n là số tự nhiên )
chứng tỏ A=10^n + 18n - 1 chia hết cho 27 n là số tự nhiên
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
Chứng tỏ: A= 10n+ 18n- 1 chia hết cho 27( với n là số tự nhiên)
Ta có: 10n + 18n - 1 = (10n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n + 18n - 1 chia hết cho 27 (đpcm)
Trl :
Bạn kia làm đúng rồi nhé !
Học tốt nhé bạn @