Tính
A=\(\frac{2^{a+1}.73+2^{a+1}.57}{2^a.104}\)
Tính :A=\(\frac{2^{a+1}.73+2^{a+1}.57}{2^a.104}\)
Ta có: \(A=\frac{2^{a+1}.73+2^{a+1}.57}{2^a.104}=\frac{2^{a+1}\left(73+57\right)}{2^a.104}=\frac{2^a.2.130}{2^a.104}=\frac{2.130}{104}=\frac{5}{2}\)
Bài này dễ mà bn~
Học tốt nha!
=.=~
Tinh \(A=\frac{2^{a+1}.73+2^{a+1}.57}{2^a.104}\)
\(A=\frac{2^a.2.73+2^a.2.57}{2^a.104}=\frac{2^a.\left(146+114\right)}{2^a.104}=\frac{260}{104}=\frac{65}{26}\)
\(\frac{2^{a+1}.73+2^{a+1}.57}{2^a.204}\)Tính tổng
\(\frac{2^{a+1}.73+2^{a+1}.57}{2^a.204}\)
\(=\frac{2^a.2.\left(73+57\right)}{2^a.204}\)
\(=\frac{2.130}{204}\)
\(=\frac{65}{51}\)
tính :A=2a+1.73+2a+1.57
2a.104
\(A=\frac{2^{a+1}.73+2^{a+1}.57}{2^a.104}\)
\(=\frac{2^{a+1}.\left(73+57\right)}{2^a.104}\)
\(=\frac{2^a.2.130}{2^a.104}\)
\(=\frac{1.1.130}{1.52}\)
\(=\frac{5}{2}\)
Tìm x biết :
a) \(\frac{1}{2013}\times x+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2012\times2013}=2\)
b)\(2x+\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+\frac{31}{30}+\frac{43}{42}+\frac{57}{56}+\frac{73}{72}+\frac{91}{90}=10\)
Tính các tổng sau
a, A = 1 + 5 3 + 5 5 + 5 7 + . . . + 5 99
b, A = 1 - 2 + 2 2 - . . . - 2 2007
c, A = 7 + 7 3 + 7 5 + 7 7 + . . . + 7 1999
a, A = 1 + 5 3 + 5 5 + 5 7 + . . . + 5 99
B = 5 4 + 5 6 + 5 8 + . . . + 5 100 = 5 . ( 5 3 + 5 5 + 5 7 + . . . + 5 99 ) = 5(A – 1)
A + B – 1 = 5 3 + 5 4 + . . . + 5 100
5(A + B – 1) = 5 4 + 5 5 + . . . + 5 100 + 5 101
4(A + B – 1) = 5(A + B – 1) – (A + B – 1) = 5 101 - 5 3
=> A + B – 1 = 5 101 - 5 3 4
=> A + 5(A – 1) –1 = 5 101 - 5 3 4 => 6A – 6 = 5 101 - 5 3 4
=> A – 1 = 5 101 - 5 3 24
=> A = 5 101 - 5 3 + 24 24
b, A = 1 - 2 + 2 2 - . . . - 2 2007
A = 1 + 2 2 + . . . + 2 2006 - 2 + 2 3 + . . . + 2 2007
A = ( 1 + 2 2 + . . . + 2 2006 ) - 2 . 1 + 2 2 + . . . + 2 2006
A = - 1 + 2 2 + . . . + 2 2006
Đặt B = - 2 + 2 3 + . . . + 2 2007 = - 2 . 1 + 2 2 + . . . + 2 2006 = 2A
A + B = - 1 + 2 + 2 2 + . . . + 2 2006 + 2 2007
2(A+B) = - 2 + 2 2 + . . . + 2 2006 + 2 2007 + 2 2008
A+B = 2(A+B)–(A+B) = - 2 2008 - 1
=> A+2A = - 2 2008 - 1
=> 3A = - 2 2008 - 1
=> A = - ( 2 2008 - 1 ) 3
c, A = 7 + 7 3 + 7 5 + 7 7 + . . . + 7 1999
Đặt B = 7 2 + 7 4 + 7 6 + . . . + 7 1999 + 7 2000 = 7 ( 7 + 7 3 + 7 5 + 7 7 + . . . + 7 1999 ) = 7A
A+B = 7 + 7 2 + 7 3 + . . . + 7 1999 + 7 2000
7(A+B) = 7 2 + 7 3 + . . . + 7 1999 + 7 2000 + 7 2001
7(A+B) – (A+B) = ( 7 2 + 7 3 + . . . + 7 1999 + 7 2000 + 7 2001 ) – ( 7 + 7 2 + 7 3 + . . . + 7 1999 + 7 2000 )
6(A+B) = 7 2001 - 7
A+B = 7 2001 - 7 6
=> A + 7A = 7 2001 - 7 6 => 8A = 7 2001 - 7 6 => A = 7 2001 - 7 48
Tính các tổng sau:
a) A = 1 + 5 3 + 5 5 + 5 7 + . . . + 5 99
b) A = 1 - 2 + 2 2 - . . . - 2 2007
c) A = 7 + 7 3 + 7 5 + 7 7 + . . . + 7 1999
Dựa vào tính chất lũy thừa để tính
a) \(A = \sqrt[3]{{5\sqrt {\frac{1}{5}} }};\,\,a = 5\)
b) \(B = \frac{{4\sqrt[5]{2}}}{{\sqrt[3]{4}}};\,\,a = \sqrt 2 \)
Tính nhanh (nếu có thể):
a) 2154 - 42 - 2155 + 2
b) -(27-85) - (73+15)
c) 1 +2 -3 -4 +5 +6 -7 -8 +9 +...+101 +102 -103 -104 +105