tìm giá trị
Q=4+3/5+...+3/95+3/97+3/99 / 1/1.99+1/3.97+1/5.95+...+1/95.5+1/97.3+1/99.1
tính giá trị
Q=4+3/5+...+3/95+3/97+3/99 / 1/1.99+1/3.97+1/5.95+...+1/95.5+1/97.3+1/99.1
Tính giá trị của : \(Q=\frac{4+\frac{3}{5}+...+\frac{3}{95}+\frac{3}{97}+\frac{3}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{95.5}+\frac{1}{97.3}+\frac{1}{99.1}}\)
Q=\(\frac{3+1+\frac{3}{5}+...+\frac{3}{99}}{\left(\frac{1}{1.99}+\frac{1}{99.1}\right)+\left(\frac{1}{3.97}+\frac{1}{97.3}\right)+...+\left(\frac{1}{49.51}+\frac{1}{51.49}\right)}\)
Q=\(\frac{\frac{3}{1}+\frac{3}{3}+\frac{3}{5}+...+\frac{3}{99}}{\frac{2}{1.99}+\frac{2}{3.97}+...+\frac{2}{49.51}}\)
Q=\(50.\frac{3\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)}{50\left(\frac{2}{1.99}+\frac{2}{3.97}+...+\frac{2}{49.51}\right)}\)
Q=\(50.3.\frac{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}}\)
Q=\(150.\frac{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{99+1}{1.99}+\frac{97+3}{3.97}+...+\frac{51+49}{49.51}}\)
Q=150\(.\frac{\frac{1}{1}+\frac{1}{3}+...+\frac{1}{99}}{\left(\frac{1}{1}+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)}\)
Q=\(150.\frac{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}\)
Q=150.1
Q=150
\(Q=\frac{4+\frac{3}{5}+...+\frac{3}{95}+\frac{3}{97}+\frac{3}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{95.5}+\frac{1}{97.3}+\frac{1}{99.1}}\)
=> \(Q=\frac{100\left(\frac{3}{1}+\frac{3}{3}+\frac{3}{5}+...+\frac{3}{95}+\frac{3}{97}+\frac{3}{99}\right)}{100\left(\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{95.5}+\frac{1}{97.3}+\frac{1}{99.1}\right)}\)
=> \(Q=\frac{100.3\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{95}+\frac{1}{97}+\frac{1}{99}\right)}{\frac{1+99}{1.99}+\frac{3+97}{3.97}+\frac{5+95}{5.95}+...+\frac{95+5}{95.5}+\frac{97+3}{97.3}+\frac{99+1}{99.1}}\)
=> \(Q=\frac{300\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{95}+\frac{1}{97}+\frac{1}{99}\right)}{\left(\frac{1}{1}+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{95}+\frac{1}{5}\right)+\left(\frac{1}{97}+\frac{1}{3}\right)+\left(\frac{1}{99}+\frac{1}{1}\right)}\)
=> \(Q=\frac{300\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{95}+\frac{1}{97}+\frac{1}{99}\right)}{2\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{95}+\frac{1}{97}+\frac{1}{99}\right)}\)
=> \(Q=\frac{300}{2}=150\)
Rút gọn A/B biết :
A = 4+3/5+3/7+....+3/95+3/97+3/99
B = 1/1.99+1/3.97+1/5.95+....+1/95.5+1/97.3
Tính giá trị biểu thức sau:
A= [ 1+1/3+1/5+1/7+...+1/97+1/99 ] / [ 1/(1.99) + 1/(3.97)+ 1/(5.95) +...+ 1/(97.3) + 1/(99.1 ) ]
Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)
\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
\(A=\frac{B}{6}=\frac{100}{2}=50\)
Vậy \(A=50\)
tính : (1+1/3+1/5+1/7+...+1/99)/(1/1.99+1/3.97+1/5.95+...+1/97.3+1/99.1)
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
a) Tính nhanh giá trị biểu thức sau:
\(\frac{4+\frac{3}{5}+\frac{3}{7}+.....+\frac{3}{95}+\frac{3}{97}+\frac{3}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+.....+\frac{1}{95.5}+\frac{1}{97.3}+\frac{1}{99.1}}\)
b) Tìm các số nguyên x,y thỏa mãn: \(y.\left(x-1\right)=x^2+12\)
Làm cả bài ra cho mình.
Đặt \(\frac{A}{B}=\frac{4+\frac{3}{5}+\frac{3}{7}+...+\frac{3}{95}+\frac{3}{97}+\frac{3}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{95.5}+\frac{1}{97.3}+\frac{1}{99.1}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{4+\frac{3}{5}+\frac{3}{7}+...+\frac{3}{93}+\frac{3}{95}+\frac{3}{97}+\frac{3}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+\frac{1}{7.93}+...+\frac{1}{93.7}+\frac{1}{95.5}+\frac{1}{97.3}+\frac{1}{99.1}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{4+3.\frac{1}{5}+3.\frac{1}{7}+...+3.\frac{1}{93}+3.\frac{1}{95}+3.\frac{1}{97}+3.\frac{1}{99}}{1.\frac{1}{99}+\frac{1}{3}.\frac{1}{97}+\frac{1}{5}.\frac{1}{95}+\frac{1}{7}.\frac{1}{93}+...+\frac{1}{93}.\frac{1}{7}+\frac{1}{95}.\frac{1}{5}+\frac{1}{97}.\frac{1}{3}+\frac{1}{99}.1}\)
\(\Leftrightarrow\frac{A}{B}=\frac{4+3+3+...+3+3+3+3}{1.\frac{1}{99}+\frac{1}{3}.\frac{1}{97}+...+\frac{1}{93}.\frac{1}{7}+\frac{1}{95}.\frac{1}{5}.\frac{1}{3}.1}\)
P/s:Tới đây bạn giải tiếp nha! Mình cũng không chắc cho lắm! Khi nào mình biết mình sẽ giải tiếp cho bạn! Nên đừng dis
Câu này mình chưa được học mà! Bạn cứ giải tiếp đi xem nào!
1. Tính nhanh các bài sau:
a) \(4+\frac{3}{5}+\frac{3}{7}+...+\frac{3}{95}+\frac{3}{97}+\frac{3}{99}\)
b) \(\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{95.5}+\frac{1}{97.3}+\frac{1}{99.1}\)
Ps: Mình đang cần giải bài này cho một bạn trong lớp mình nhưng chưa biết giải thế nào! M.n giúp vs! Thaks m.n
Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)
\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
\(A=\frac{B}{6}=\frac{100}{2}=50\)
Vậy \(A=50\)
Tính : \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{97.3}+\frac{1}{99.1}}\)
Thưc hiện phép tính
\(\frac{1+\frac{1}{3}+\frac{1}{5}+...\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{97.3}+\frac{1}{99.1}}\)
Tử số = 1 + 1/3 + 1/5 + ... + 1/97 + 1/99
= (1 + 1/99) + (1/3 + 1/97) + ... + (1/49 + 1/51)
= 100/1.99 + 100/3.97 + ... + 100/49.51
= 100.(1/1.99 + 1/3.97 + ... + 1/49.51)
Mẫu số = 1/1.99 + 1/3.97 + 1/5.95 + ... + 1/97.3 + 1/99.1
= 2.(1/1.99 + 1/3.97 + 1/5.95 + ... + 1/49.51)
=> phân số đề bài cho = 100/2 = 50
Ta có :
\(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{97.3}+\frac{1}{99.1}}\)
\(=\frac{\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)}{2.\left(\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{49.51}\right)}\)
\(=\frac{\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}}{2.\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}\)
\(=\frac{100.\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}{2.\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}\)
\(=\frac{100}{2}=50\)
Ủng hộ mk nha !!! ^_^
Tính B=(1/2+1/3+1/4+....+1/100)/(99/1+98/2+97/3+...+1/99)