Cho dãy tỉ số bằng nhau a/2009=b/2011=c/2013
CMR: (a-c)2/4=(a-b)(b-c)
Cho dãy tỉ số bằng nhau : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}.CMR:\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)
Ta có : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)
\(=>\frac{\left(a-c\right)^2}{16}=\left(\frac{a-b}{-2}\right).\left(\frac{b-c}{-2}\right)=\frac{\left(a-b\right).\left(b-c\right)}{4}\)
\(=>\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)
Cho dãy tỉ số bằng nhau : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}.CMR:\frac{\left(a-c\right)^2}{4}=\left(a-c\right).\left(b-c\right)\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{a}{2009}=\frac{b}{2011}=\frac{a-b}{2009-2011}=\frac{a-b}{-2}\)
\(\frac{b}{2011}=\frac{c}{2013}=\frac{b-c}{2011-2013}=\frac{b-c}{-2}\)
\(\frac{a}{2009}=\frac{c}{2013}=\frac{a-c}{2009-2013}=\frac{a-c}{-4}\)
=> \(\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)
=> \(\frac{a-b}{-2}.\frac{b-c}{-2}=\left(\frac{a-c}{4}\right)^2\)
=> \(\frac{\left(a-c\right)^2}{4^2}=\frac{\left(a-b\right)\left(b-c\right)}{4}\)
=> \(\frac{\left(a-c\right)^2}{4}=\left(a-c\right)\left(b-c\right)\)
Ta có : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)
\(=>\frac{\left(a-c\right)^2}{16}=\left(\frac{a-b}{-2}\right).\left(\frac{b-c}{-2}\right)=\frac{\left(a-b\right).\left(b-c\right)}{4}\)
\(=>\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)
a) Cho dãy tỉ số bằng nhau a/2009=b/2011=c/2013
cmr: (a-c)2/4= ( a-b)(b-c)
b) Cho đa thức f(x) thỏa mãn điều kiện x.f(x+1)=(x+2)f(x)
cmr: đa thức f(x) có ít nhất 2 nghiệm
ÁP DỤNG TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU GIẢI CÁC BÀI SAU:
1)Cho a/b = c/d. Chứng tỏ 2a-5b/3a = 2c-5d/3c
2)Cho a/b = c/d. Chứng tỏ ac/bd = a^2+c^2/b^2+d^2
3)Cho a/b = c/d. Chứng tỏ a+2011/b+2011 = c+2011/d+2011
Cho số A=2011; b khác 2009; c khác 2010 và \(\frac{a-2009}{b-2011}=\frac{b-2011}{c-2010}:\frac{2011-b}{2010-c}=\frac{2010-c}{2009-a}\)
Tìm tỉ số \(\frac{b}{c}\)?
\(\frac{b-2011}{c-2010}:\frac{2011-b}{2010-c}=\frac{b-2011}{c-2010}\cdot\frac{-\left(c-2010\right)}{-\left(b-2011\right)}=1\)
\(\frac{a-2009}{b-2011}=\frac{2010-c}{2009-a}=\frac{-\left(c-2010\right)}{-\left(a-2009\right)}=\frac{c-2010}{a-2009}=1\Rightarrow a-2009=c-2010=b-2011\)
\(\Rightarrow a=c-1=b-2\Rightarrow c=b-1\Rightarrow\frac{b}{c}=\frac{b}{b-1}\)=.=' ko chắc lăm
Thanks!!! Nhưng xin lỗi mặc dù phải là -1. Cảm ơn bạn
Cho số a=2011; b khác 2009; c khác 2010 và \(\frac{a-2009}{b-2011}=\frac{b-2011}{c-2010}:\frac{2011-b}{2010-c}=\frac{2010-c}{2009-a}\)
Tìm tỉ số \(\frac{b}{c}\)?
Giúp tui zới!!!!
Cho dãy tỉ số bằng nhau: \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}\)
Chứng minh rằng: \(\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)
Bạn nào đó giúp tớ với,Ai giúp cho 2 tick có cách làm nha từ giờ cho tới 7 h tối
Ta có : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)
\(=>\frac{\left(a-c\right)^2}{16}=\left(\frac{a-b}{-2}\right).\left(\frac{b-c}{-2}\right)=\frac{\left(a-b\right).\left(b-c\right)}{4}\)
\(=>\frac{\left(a-c\right)^2}{4}=\left(a-c\right).\left(b-c\right)\)
+) a=b=c=0
=>\(\frac{\left(a-c\right)^2}{4}=0;\left(a-b\right)\left(b-c\right)=0\Rightarrow\frac{\left(a-c\right)^2}{4}=\left(a-b\right)\left(b-c\right)\)(1)
+) \(a\ne b\ne c\ne0\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{c-a}{4}\)
\(\Rightarrow\frac{\left(a-c\right)^2}{4^2}=\frac{\left(a-b\right)\left(a+b\right)}{\left(-2\right)\left(-2\right)}\Rightarrow\frac{\left(a-c\right)^2}{16}=\frac{\left(a-b\right)\left(b-c\right)}{4}\Rightarrow\frac{\left(a-c\right)^2}{4}=\left(a-b\right)\left(b-c\right)\)(2)
Từ (1) và (2)
=> đpcm
Mình làm rồi nhớ cho mình 2 tick nha bạn Lý Hoàng Kim Thủy.
cho dãy tỉ số bằng nhau a/2019=b/2021=c/2023 chứng minh rằng (a-c)^2/4=(a-b)(b-c
Cho dãy tỉ số bằng nhau \(\dfrac{a}{2019}\) = \(\dfrac{b}{2021}\) = \(\dfrac{c}{2023}\). Chứng minh rằng \(\dfrac{\left(a-c\right)^2}{4}\) = (a - b)(b - c)
Đặt a/2019=b/2021=c/2023=k
=>a=2019k; b=2021k; c=2023k
(a-c)^2/4=(2023k-2019k)^2/4=(4k)^2/4=4k^2
(a-b)(b-c)=(2019k-2021k)(2021k-2023k)=4k^2
=>(a-c)^2/4=(a-b)(b-c)