Giải phương trình \(x^2-7x+8=2\sqrt{x}\)
x2+7x+\(\sqrt{x^2+7x+8}\)=12
giải phương trình
Đặt \(\sqrt{x^2+7x+8}=a\) thì ta có
\(a^2+a-20=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-5\left(l\right)\\a=4\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2+7x+8}=4\)
\(\Leftrightarrow x^2+7x-8=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=1\end{cases}}\)
\(x^2+7x+\sqrt{x^2+7x+8}=12\)
ĐK : \(x^2+7x+8\ge0\Leftrightarrow\orbr{\begin{cases}x\le\frac{-7-\sqrt{17}}{2}\\x\ge\frac{-7+\sqrt{17}}{2}\end{cases}}\)
Đặt \(t=x^2+7x\)
pt \(\Leftrightarrow t+\sqrt{t+8}=12\)
\(\Leftrightarrow\sqrt{t+8}=12-t\)( \(-8\le t\le12\))
Bình phương hai vế
\(\Leftrightarrow t+8=144-24t+t^2\)
\(\Leftrightarrow t^2-24t+144-t-8=0\)
\(\Leftrightarrow t^2-25t+136=0\)(*)
\(\Delta=b^2-4ac=\left(-25\right)^2-4\cdot136=625-544=81\)
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}t_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{25+\sqrt{81}}{2}=\frac{34}{2}=17\left(loai\right)\\t_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{25-\sqrt{81}}{2}=\frac{16}{2}=8\left(nhan\right)\end{cases}}\)
\(\Rightarrow x^2+7x=8\)
\(\Rightarrow x^2+7x-8=0\)
\(\Rightarrow x^2-x+8x-8=0\)
\(\Rightarrow x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+8\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}\left(tm\right)}\)
Vậy phương trình có hai nghiệm \(\hept{\begin{cases}x_1=1\\x_2=-8\end{cases}}\)
\(ĐKXĐ:x^2+7x+8\ge0\Leftrightarrow\hept{\begin{cases}x\le\frac{-7-\sqrt{17}}{2}\\x\ge\frac{-7+\sqrt{17}}{2}\end{cases}}\)
Đặt \(x^2+7x=a\) nên
\(pt\Leftrightarrow a+\sqrt{a+8}=12\Leftrightarrow\sqrt{a+8}=12-a\)
\(\Leftrightarrow a+8=\left(12-a\right)^2=a^2-24a+144\)
\(\Leftrightarrow a^2-24a+144-a-8=0\)
\(\Leftrightarrow a^2-25a+136=0\)
\(\Leftrightarrow a^2-8a-17a+136=0\)
\(\Leftrightarrow a\left(a-8\right)-17\left(a-8\right)=0\)
\(\Leftrightarrow\left(a-17\right)\left(a-8\right)=0\Rightarrow\orbr{\begin{cases}a=17\\a=8\end{cases}}\)
Đến đây dễ rồi; lm
Giải các phương trình sau:
a) \(\sqrt {{x^2} - 7x} = \sqrt { - 9{x^2} - 8x + 3} \)
b) \(\sqrt {{x^2} + x + 8} - \sqrt {{x^2} + 4x + 1} = 0\)
c) \(\sqrt {4{x^2} + x - 1} = x + 1\)
d) \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \)
a) \(\sqrt {{x^2} - 7x} = \sqrt { - 9{x^2} - 8x + 3} \)
\(\begin{array}{l} \Rightarrow {x^2} - 7x = - 9{x^2} - 8x + 3\\ \Rightarrow 10{x^2} + x - 3 = 0\end{array}\)
\( \Rightarrow x = - \frac{3}{5}\) và \(x = \frac{1}{2}\)
Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {{x^2} - 7x} = \sqrt { - 9{x^2} - 8x + 3} \) thì ta thấy chỉ có nghiệm \(x = - \frac{3}{5}\) thỏa mãn phương trình
Vậy nghiệm của phương trình là \(x = - \frac{3}{5}\)
b) \(\sqrt {{x^2} + x + 8} - \sqrt {{x^2} + 4x + 1} = 0\)
\(\begin{array}{l} \Rightarrow \sqrt {{x^2} + x + 8} = \sqrt {{x^2} + 4x + 1} \\ \Rightarrow {x^2} + x + 8 = {x^2} + 4x + 1\\ \Rightarrow 3x = 7\\ \Rightarrow x = \frac{7}{3}\end{array}\)
Thay \(x = \frac{7}{3}\) vào phương trình \(\sqrt {{x^2} + x + 8} - \sqrt {{x^2} + 4x + 1} = 0\) ta thấy thỏa mãn phương trình
Vậy nghiệm của phương trình đã cho là \(x = \frac{7}{3}\)
c) \(\sqrt {4{x^2} + x - 1} = x + 1\)
\(\begin{array}{l} \Rightarrow 4{x^2} + x - 1 = {\left( {x + 1} \right)^2}\\ \Rightarrow 4{x^2} + x - 1 = {x^2} + 2x + 1\\ \Rightarrow 3{x^2} - x - 2 = 0\end{array}\)
\( \Rightarrow x = - \frac{2}{3}\) và \(x = 1\)
Thay hai nghiệm trên vào phương trình \(\sqrt {4{x^2} + x - 1} = x + 1\) ta thấy cả hai nghiệm đều thỏa mãn
Vậy nghiệm của phương trình trên là \(x = - \frac{2}{3}\) và \(x = 1\)
d) \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \)
\(\begin{array}{l} \Rightarrow 2{x^2} - 10x - 29 = x - 8\\ \Rightarrow 2{x^2} - 11x - 21 = 0\end{array}\)
\( \Rightarrow x = - \frac{3}{2}\) và \(x = 7\)
Thay hai nghiệm \(x = - \frac{3}{2}\) và \(x = 7\) vào phương trình \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \) ta thấy cả hai đều không thảo mãn phương trình
Vậy phương trình \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \) vô nghiệm
Giải phương trình
\(\sqrt{x^2+8}-7x=\sqrt{x^2+3}-6\)
Giải phương trình sau:
\(\sqrt[3]{7x+1}-\sqrt[3]{x^2-x+8}+\sqrt[3]{x^2-8x-1}=2\)
Đặt:
\(a=\sqrt[3]{x^2-x-8};b=\sqrt[3]{x^2-8x-1}\)
Để ý thấy rằng: \(a^3-b^3=7x-7=\left(7x+1\right)+8\)nên PT trở thành:
\(b-a+\sqrt[3]{a^3-b^3+8}=2\)
\(\Leftrightarrow a^3-b^3+8=\left(2+a-b\right)^3\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)=\left(a-b\right)^3+6\left(a-b\right)\left[2+\left(a-b\right)\right]\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\\left(a-b\right)^2+3ab=\left(a-b\right)^2+12+6\left(a-b\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\\left(a+2\right)\left(2-b\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\a=-2\\b=2\end{cases}}\)
\(\left(+\right)a=b\Leftrightarrow x^2-x-8=x^2-8x-1\Leftrightarrow x=1\)
\(\left(+\right)a=-2\Leftrightarrow x^2-x-8=-8\Leftrightarrow\orbr{\begin{cases}a=0\\x=1\end{cases}}\)
\(\left(+\right)b=2\Leftrightarrow x^2-8x-1=8\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
\(\Rightarrow x\in\left\{\pm1;0;9\right\}\)
Giải phương trình: \(\sqrt[3]{7x-8}+5\sqrt{x-1}=x\sqrt{2x-1}-2\)
\(\sqrt[3]{7x-8}+5\sqrt{x-1}=x\sqrt{2x-1}-2\)
\(\Leftrightarrow\sqrt[3]{7x-8}-3+5\sqrt{x-1}-10=x\sqrt{2x-1}-15\)
\(\Leftrightarrow\frac{7x-8-27}{\sqrt[3]{7x-8}^2+3\sqrt[3]{7x-8}+9}+5\frac{x-1-4}{\sqrt{x-1}-2}-\frac{x^2\left(2x-1\right)-225}{x\sqrt{2x-1}+15}=0\)
\(\Leftrightarrow\frac{7\left(x-5\right)}{\sqrt[3]{7x-8}^2+3\sqrt[3]{7x-8}+9}+5\frac{x-5}{\sqrt{x-1}-2}-\frac{\left(x-5\right)\left(2x^2+9x+45\right)}{x\sqrt{2x-1}+15}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{7}{\sqrt[3]{7x-8}^2+3\sqrt[3]{7x-8}+9}+\frac{5}{\sqrt{x-1}-2}-\frac{2x^2+9x+45}{x\sqrt{2x-1}+15}\right)=0\)
Suy ra x=5
Bài này có 2 nghiệm là x = 1 và x = 5 nhưng không biết giải thế nào.
\(\sqrt[3]{7x-8}+5\sqrt{x-1}=x\sqrt{2x-1}-2\)\(\Leftrightarrow\left[\sqrt[3]{7x-8}-\left(x-2\right)\right]+5\left(\sqrt{x-1}-\frac{x-1}{2}\right)+x\left(\frac{x+1}{2}-\sqrt{2x-1}\right)\)\(+\left(x-2\right)-\frac{x\left(x+1\right)}{2}+\frac{5}{2}\left(x-1\right)+2\)
\(\Leftrightarrow2\left[\sqrt[3]{7x-8}-\left(x-2\right)\right]+x\left(x+1-2\sqrt{2x-1}\right)+\)\(5\left[2\sqrt{x-1}-\left(x-1\right)\right]-x^2+6x-5=0\)
\(\Leftrightarrow2\left[\left(x-2\right)-\sqrt[3]{7x-8}\right]+x\left[2\sqrt{2x-1}-\left(x-1\right)\right]+\)\(5\sqrt{x-1}\left(\sqrt{x-1}-2\right)+x^2-6x+5=0\)
\(\Leftrightarrow\left(x-5\right)\sqrt{x-1}\left[\frac{2x\sqrt{x-1}}{A}+\frac{-x\sqrt{x-1}}{2\sqrt{2x-1}+x+1}+\frac{5}{\sqrt{x-1}+2}+\sqrt{x-1}\right]=0\)
\(\Leftrightarrow\left(x-5\right)\sqrt{x-1}=0\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\).
Giải phương trình:
\(a,x^2-7x+\sqrt{x^2-7x+8}=12\)
b, \(x^2+4x+5=2\sqrt{2x+3}\)
a,\(x^2-7x+\sqrt{x^2-7x+8}=12\)
ĐKXĐ: .....
Đặt \(x^2-7x=t\)
Phương trình trở thành
\(t+\sqrt{t+8}=12\)
\(\Leftrightarrow\sqrt{t+8}=12-t\)
\(\Leftrightarrow t+8=\left(12-t\right)^2\)
\(\Leftrightarrow t+8=144-24t+t^2\)
\(\Leftrightarrow t^2-25t+136=0\)
\(\Leftrightarrow\left(t-17\right)\left(t-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-17=0\\t-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=17\\t=8\end{cases}}}\)
tại t = 17 , ta có
\(x^2-7x=17\Leftrightarrow x^2-7x-17=0\)
\(\Leftrightarrow.......\)
Tại t = 8 ta có
\(x^2-7x=8\Leftrightarrow x^2-7x-8=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}}\)
b, \(x^2+4x+5=2\sqrt{2x+3}\)
mik ko bt :)
a,đkxđ:\(x^2-7x+8\ge0\Leftrightarrow x^2-2\cdot\frac{7}{2}x+\frac{49}{4}-\frac{17}{4}\ge0\Leftrightarrow\left(x-\frac{7}{2}\right)^2\ge\frac{17}{4}\Leftrightarrow\hept{\begin{cases}x-\frac{7}{2}\ge\frac{\sqrt{17}}{2}\approx2,06\\x-\frac{7}{2}\le-\frac{\sqrt{17}}{2}\approx-2,06\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5,56\\x\le1,44\end{cases}}\)
\(\Leftrightarrow\left(x^2-7x+8\right)+\sqrt{x^2-7x+8}=12+8=20\)
\(\Leftrightarrow4\left(x^2-7x+8\right)+4\sqrt{x^2-7x+8}+1=20\cdot4+1=81\)
\(\Leftrightarrow\left(2\sqrt{x^2-7x+8}+1\right)^2=81\)
\(\Leftrightarrow2\sqrt{x^2-7x+8}+1=\pm9\)
Mà vế trái >0 nên \(2\sqrt{x^2-7x+8}+1=9\)
\(\Leftrightarrow\sqrt{x^2-7x+8}=\frac{9-1}{2}=4\)
\(\Leftrightarrow x^2-7x+8=16\)
\(\Leftrightarrow x^2-7x-8=0\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
Giải các phương trình sau:
1) \(\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{12x-8}{\sqrt{9x^2+16}}.\)
2) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}.\)
1. Giải phương trình: \(\sqrt{x-2}+\sqrt{4-x}=\sqrt{2}\) .
2. Giải phương trình: \(4x^4-7x^3+9x^2-10x+4=0\).
3. Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2+y^2=3-xy\\x^4+y^4=2\end{matrix}\right.\) .
Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$
$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$
$\Leftrightarrow x-2=0$ hoặc $4-x=0$
$\Leftrightarrow x=2$ hoặc $x=4$ (tm)
Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$
$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$
Với $4x^3-3x^2+6x-4=0(*)$
Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$
Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:
$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$
Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)
Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)
Nãy mình tìm được một cách giải tương tự cho câu 2.
PT \(\Leftrightarrow\left(x-1\right)\left(4x^3-3x^2+6x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x^3-3x^2+6x-4=0\left(1\right)\end{matrix}\right.\)
Vậy pt có 1 nghiệm bằng 1.
\(\left(1\right)\Rightarrow8x^3-6x^2+12x-8=0\)
\(\Leftrightarrow7x^3+x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=-7x^3\)
\(\Leftrightarrow x-2=-\sqrt[3]{7}x\)
\(\Leftrightarrow x=\dfrac{2}{1+\sqrt[3]{7}}\)
Vậy pt có nghiệm \(S=\left\{1;\dfrac{2}{1+\sqrt[3]{7}}\right\}\)
Lưu ý: Nghiệm của người kia hoàn toàn tương đồng với nghiệm của mình (\(\dfrac{2}{1+\sqrt[3]{7}}=\dfrac{1}{4}\left(1-\sqrt[3]{7}+\sqrt[3]{49}\right)\))
Giải phương trình: \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)
\(ĐK:x\ge-8\)
\(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)
\(\Leftrightarrow x+8-3x\sqrt{x+8}-\left(x+2\right)\sqrt{x+8}+3x\left(x+2\right)=0\)
\(\Leftrightarrow\sqrt{x+8}\left(\sqrt{x+8}-3x\right)-\left(x+2\right)\left(\sqrt{x+8}-3x\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+8}-x-2\right)\left(\sqrt{x+8}-3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+8}=x+2\left(1\right)\\\sqrt{x+8}=3x\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow x+8=x^2+4x+4\Leftrightarrow x^2+3x-4=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-4\left(L\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow9x^2-x-8=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=\frac{-8}{9}\left(L\right)\end{cases}}\)
Vậy nghiệm duy nhất của phương trình là 1
ĐKXĐ : x \(\ge\)-8
PT đã cho tương đương với :
\(2\left(2x+1\right)\sqrt{x+8}=4x^2+4x+1+x+8-\left(x^2-2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x+1\right)\sqrt{x+8}+x+8-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-\sqrt{x+8}\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x+2-\sqrt{x+8}\right)\left(3x-\sqrt{x+8}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2-\sqrt{x+8}=0\\3x-\sqrt{x+8}=0\end{cases}}\)
Từ đó giải ra x = 1 thỏa mãn đề bài
giúp mình giải câu đấy nữa
Giải phương trình sau:
\(\sqrt[3]{7x+1}-\sqrt[3]{x^2-x+8}+\sqrt[3]{x^2-8x-1}=2\)\(_{ }\)
Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần