Tìm các giá trị nguyên của x thỏa mãn \(\left|x-2013\right|+\left|x-1989\right|\le24\)
Số các giá trị nguyên x thỏa mãn \(\left|x-2013\right|+\left|x-1989\right|\le24\) là ...
Ghi cả cách giải
cho các số thực x,y,z thỏa mãn\(\hept{\begin{cases}x+y+z=6\\\left(x-1\right)^3+\left(y-2\right)^3+\left(z-3\right)^3=0\end{cases}}\)
Tính giá trị biểu thức của F=(x-1)2013+(y-2)2013+(z-3)2013
Cho các số nguyên x,y thỏa mãn 3x-2y+1=0
Tìm x,y để giá trị của \(P=\left|x\right|+\left|y\right|\)là nhỏ nhất
\(3x-2y+1=0\Rightarrow y=\frac{3x+1}{2}\)
Do y nguyên nên \(\frac{3x+1}{2}\in Z\Rightarrow x=2k+1\)
Khi đó \(P=\left|x\right|+\left|\frac{3x+1}{2}\right|\), ta tiến hành phá dấu trị tuyệt đối của P.
Với \(x\le-\frac{1}{3}\) do x nguyên nên ta có thể coi như \(x\le-1\)
Với \(x\le-1\Rightarrow P=-x-\frac{3x+1}{2}=-\frac{5x+1}{2}\ge2.\)
Khi đó minP = 2 khi x = -1, y = -1.
Với \(-\frac{1}{3}< x< 0\) không có giá trị x nguyên thỏa mãn.
Với \(x\ge0,\) do \(x=2k+1\Rightarrow\) ta có thể coi \(x\ge1\)
Với \(x\ge1\Rightarrow P=x+\frac{3x+1}{2}=\frac{5x+1}{2}\ge3\)
Vậy \(minP=3\) khi \(x=1\Rightarrow y=2\)
Tóm lại \(minP=2\) khi x = -1, y = -1.
1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).
2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:
\(M=\left(a-b\right)\left(a+b-1\right)\).
3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).
1)
i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.
ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).
2)
i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .
ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).
Tập hợp các giá trị nguyên của x thỏa mãn \(\left|x-3\right|^2+\left|x-3\right|=0\) là {}
Ta có : |x - 3|2 luôn luôn lớn hơn hoặc bằng 0 với mọi x
|x - 3| luôn luôn lớn hơn hoặc bằng 0 với mọi x
Mà |x - 3|2 + |x - 3| = 0
Suy ra : \(\hept{\begin{cases}\left|x-3\right|^2=0\\\left|x-3\right|=0\end{cases}}\) \(\Rightarrow\left|x-3\right|=0\)
\(\Rightarrow x-3=0\Rightarrow x=3\)
chuyển vế đi=> X=3 hoặc X=2
Tập hợp có 2 phần tử 3;2
/x-3/2+/x-3/=0 (1)
+/ Với x\(\ge\)3 => x-3\(\ge\)0 => (1) <=> (x-3)2+x-3=0 <=> (x-3)(x-3+1)=0
<=>(x-3)(x-2)=0 => x=2 và x=3. Mà x\(\ge\)3 => Chọn x=3
+/ Với x<3 => x-3<0 => (1) <=> (3-x)2+3-x=0 <=> (3-x)(3-x+1)=0
<=>(3-x)(4-x)=0 => x=3 và x=4. Mà x<3 => Không có giá trị phù hợp.
ĐS: x=3
1. Tìm các số tự nhiên \(n\in\left(1300;2011\right)\) thỏa mãn \(P=\sqrt{37126+55n}\in N\).
2. Tìm tất cả cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn \(x\left(x+y^3\right)=\left(x+y\right)^2+7450\).
3. Tính chính xác giá trị của biểu thức sau dưới dạng phân số tối giản :
\(A=\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(2005^4+4\right)\left(2009^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(2007^4+4\right)\left(2011^4+4\right)}\)
4. Tìm tất cả các ước nguyên tố của : \(S=\dfrac{2009}{0,\left(2009\right)}+\dfrac{2009}{0,0\left(2009\right)}+\dfrac{2009}{0,00\left(2009\right)}\).
mong mọi người giúp mình
cho x;y là các số thỏa mãn
\(\left(\sqrt{x^2+2013}+x\right)\left(\sqrt{y^2+2013}+y\right)=2013\)
hãy tính giá trị của biểu thức \(x+y\)
Nhân cả 2 vế của pt đầu với \(x-\sqrt{x^2+2013}\) được:
\(y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)
\(\Rightarrow x+y=\sqrt{x^2+2013}-\sqrt{y^2+3}\left(1\right)\)
Tương tự nhân 2 vế pt đầu với \(y-\sqrt{y^2+2013}\) được:
\(x+y=\sqrt{y^2+2013}-\sqrt{x^2+2013}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có: \(2\left(x+y\right)=0\Rightarrow x+y=0\)
sorry you because bài này mình không biết làm
kích cho mình nha
Cho x,y là các số thỏa mãn: \(\left(\sqrt{x^2+3}+x\right)\left(\sqrt{y^2+3}+y\right)=3\)
Hãy tính giá trị của biểu thức: \(A=x^{2013}+y^{2013}+1\)
Nhân 2 vế của pt đầu với \(x-\sqrt{x^2+3}\) đc:
\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)
\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\left(1\right)\)
Tương tự nhân 2 vế của pt đầu với \(y-\sqrt{y^2+3}\) đc:
\(x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\left(2\right)\)
Từ (1) và (2) =>2(x+y)=0
=>x+y=0<=>x=-y
<=>x2013=-y2013
<=>x2013+y2013=0
A=x2013+y2013+1=1
tập nghiệm của bất pt
a) \(\left|4x-8\right|\le8\)
b) \(\left|x-5\right|\le4\). (số nghiệm nguyên|)
c) \(\left|2x+1\right|< 3x\) ( giá trị nguyên x thỏa mãn [-2017;2017]
d) \(\left|x+1\right|+\left|x\right|< 3\)
e) \(\left|2-x\right|+3x-1\le6\)
a, \(\left|4x-8\right|\le8\)
\(\Leftrightarrow\left(\left|4x-8\right|\right)^2\le64\)
\(\Leftrightarrow16x^2-64x+64\le64\)
\(\Leftrightarrow16x^2-64x\le0\)
\(\Leftrightarrow16x\left(x-4\right)\le0\)
\(\Leftrightarrow0\le x\le4\)
b, \(\left|x-5\right|\le4\)
\(\Leftrightarrow\left(\left|x-5\right|\right)^2\le16\)
\(\Leftrightarrow x^2-10x+25\le16\)
\(\Leftrightarrow x^2-10x+9\le0\)
\(\Leftrightarrow1\le x\le9\)
\(\Rightarrow x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)
c, \(\left|2x+1\right|< 3x\)
TH1: \(x\ge-\dfrac{1}{2}\)
\(\left|2x+1\right|< 3x\)
\(\Leftrightarrow2x+1< 3x\)
\(\Leftrightarrow x>1\)
\(\Rightarrow\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)
TH2: \(x< -\dfrac{1}{2}\)
\(\left|2x+1\right|< 3x\)
\(\Leftrightarrow-2x-1< 3x\)
\(\Leftrightarrow x>-\dfrac{1}{5}\left(l\right)\)
Vậy \(\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)
d, \(\left|x+1\right|+\left|x\right|< 3\)
\(\Leftrightarrow x+1+x+2\left|x^2+x\right|< 9\)
\(\Leftrightarrow\left|x^2+x\right|< 4-x\)
Xét hai trường hợp để phá dấu giá trị tuyệt đối
e, Tương tự câu d