giải hê
\(x^2+y^2=4y-xy-1\\ \\ \\ y\left(x+y\right)^2=2x^2+7y+2\)
giải hệ \(\left\{{}\begin{matrix}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2-2x^2-2=7y\end{matrix}\right.\)
Bạn tham khảo, phần c:
Giải hệ phương trình: \(a,\left\{{}\begin{matrix}\left(x-y\right)\left(x^2 y^2\right)=13\\\left(x y\right)\left(x^2-y^2... - Hoc24
Giải hệ pt \(\left\{{}\begin{matrix}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{matrix}\right.\)
(mượn tạm chỗ comment) @Nguyễn Việt Lâm anh có làm việc bên online math không
Giải hpt:
\(\left\{{}\begin{matrix}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{matrix}\right.\)
\(HPt\Leftrightarrow\left\{{}\begin{matrix}2x^2+2y^2+2xy+2=8y\left(1\right)\\y\left(x+y\right)^2=2x^2+7y+2\end{matrix}\right.\)
Cộng lại:\(2y\left(x+y\right)+y\left(x+y\right)^2=15y\)
y không thể là 0 , bởi nếu y=0 thì phương trình (1) vô nghiệm.
\(\Rightarrow\left(x+y\right)^2+2\left(x+y\right)=15\Leftrightarrow\left[{}\begin{matrix}x+y=3\\x+y=-5\end{matrix}\right.\)
Nếu x+y=3, thế vào (1):\(x^2+\left(3-x\right).3+1=4\left(3-x\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)=> (x,y)...
Nếu x+y=-3 , tương tự...
giải hệ phương trình:
\(\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)
chia pt1 cho y^2 pt2 cho y rồi đặt ẩn phụ mà giải
Neu nhu bn cam thay khó !
thì chỉ cần : chia PT1 cho y2Pt2 cho y vào rồi chỉ cần đặt ẩn phụ là giải đc ngay
chúc bn học giỏi ( tk tớ nha )
y\(\ne\)0 ta có: \(\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x^2+1}{y}+x+y=4\\\left(x+y\right)^2-2\frac{x^2+1}{y}=7\end{cases}}}\)
Đặt \(u=\frac{x^2+1}{y};v=x+y\)ta có hệ \(\hept{\begin{cases}u+v=4\\v^2+2u=7\end{cases}\Leftrightarrow\hept{\begin{cases}u=4-v\\v^2+2v-15=0\end{cases}}}\Leftrightarrow\orbr{\begin{cases}v=3;u=1\\v=-5;u=9\end{cases}}\)
Với v=3; u=1 ta có hệ \(\hept{\begin{cases}x^2+1=y\\x+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+1=y\\y=3-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+x-2=0\\y=3-x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1;y=2\\x=-2;y=5\end{cases}}}\)
Với v=-5; u=9 ta có hệ \(\hept{\begin{cases}x^2+1=9y\\x+y=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+1=9y\\y=-5-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+9x+46=0\\y=-5-x\end{cases}}}\)hệ này vô nghiệm
Vậy hệ có 2 nghiệm (x;y)={(1;2);(-2;5)}
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\left(x+y-3\right)^3=4y^3\left(x^2y^2+xy+\frac{45}{4}\right)\\x+4y-3=2xy^2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+7y=\left(x+y\right)^2+x^2y+7x+4\\3x^2+y^2+8y+4=8x\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}2x+5y=xy+2\\x^2+4y+21=y^2+10x\end{matrix}\right.\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}2+6y=\frac{x}{y}-\sqrt{x-2y}\\\sqrt{x+\sqrt{x-2y}}=x+3y-2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2-7y+2\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x^2\left(y+1\right)=6y-2\\x^4y^2+2x^2y^2+y\left(x^2+1\right)=12y^2-1\end{matrix}\right.\)
Giải hệ phương trình:
\(a,\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x+y\right)\left(x^2-y^2\right)=25\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}+y\sqrt{x-1}=2\left(x-y\right)\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{matrix}\right.\)
a/ \(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x-y\right)\left(x+y\right)^2=25\end{matrix}\right.\)
Do \(x=y;x=-y\) đều ko phải nghiệm
\(\Rightarrow\frac{x^2+y^2}{\left(x+y\right)^2}=\frac{13}{25}\Leftrightarrow25\left(x^2+y^2\right)=13\left(x+y\right)^2\)
\(\Leftrightarrow12x^2-26xy+12y^2=0\)
\(\Leftrightarrow\left(2x-3y\right)\left(3x-2y\right)=0\Rightarrow\left[{}\begin{matrix}y=\frac{2}{3}x\\y=\frac{3}{2}x\end{matrix}\right.\)
Thay vào 1 trong 2 pt ban đầu là xong
b/ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\y\ge0\end{matrix}\right.\) \(\Rightarrow x+y>0\)
\(xy+x+y+y^2=x^2-y^2\)
\(\Leftrightarrow x\left(y+1\right)+y\left(y+1\right)=\left(x-y\right)\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)\left(y+1\right)=\left(x+y\right)\left(x-y\right)\)
\(\Leftrightarrow y+1=x-y\Rightarrow x=2y+1\)
Thay vào pt dưới:
\(\left(2y+1\right)\sqrt{2y}+y\sqrt{2y}=2\left(y+1\right)\)
\(\Leftrightarrow\sqrt{2y}\left(3y+1\right)=2\left(y+1\right)\)
\(\Leftrightarrow y\left(9y^2+6y+1\right)=2\left(y^2+2y+1\right)\)
\(\Leftrightarrow9y^3+2y^2-3y-2=0\)
Nghiệm quá xấu, bạn coi lại đề
c/ \(y=0\) không phải nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1+y\left(x+y\right)=4y\\y\left(x+y\right)^2-2\left(x^2+1\right)=7y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x^2+1}{y}+x+y=4\\\left(x+y\right)^2-2\left(\frac{x^2+1}{y}\right)=7\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\\frac{x^2+1}{y}=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=4\\a^2-2b=7\end{matrix}\right.\) \(\Rightarrow a^2-2\left(4-a\right)=7\)
\(\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\Rightarrow b=1\\a=-5\Rightarrow b=9\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=3\\\frac{x^2+1}{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=3-x\\x^2+1-y=0\end{matrix}\right.\)
\(\Rightarrow x^2+1-\left(3-x\right)=0\Rightarrow...\)
TH2: làm tương tự
\(\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)
\(y\ne0\)ta có: \(\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x^2+1}{y}+x+y=4\\\left(x+y\right)^2-2\frac{x^2+1}{y}=7\end{cases}}}\)
Đặt \(u=\frac{x^2+1}{y};v=x+y\)ta có hệ \(\hept{\begin{cases}u+v=4\\v^2+2v-15=0\end{cases}\Leftrightarrow\hept{\begin{cases}u=4-v\\v^2+2v-15=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}v=3;u=1\\v=-5;u=9\end{cases}}}\)
Với v=3; u=1 ta có hệ \(\hept{\begin{cases}x^2+1=y\\x+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+1=y\\y=3-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+x-2=0\\y=3-x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1;y=2\\x=-2;y=5\end{cases}}}\)
Với v=-5;u=9 ta có hệ \(\hept{\begin{cases}x^2+1=9y\\x+y=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+1=9y\\y=-5-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+9x+46=0\\y=-5-x\end{cases}}}\)(hệ này vô nghiệm)
Vậy hệ đã cho có nghiệm (x;y)={(1;2);(-2;5)}
Đề 1:
Câu 1)
b. Giải hệ phương trình:
\(\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)
Bài làm:
Ta có: \(\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)\(\left(1\right)\)\(\Leftrightarrow\hept{\begin{cases}2x^2+2=8y-2y^2-2xy\\y\left(x+y\right)^2=2x^2+2+7y\end{cases}\Leftrightarrow\hept{\begin{cases}2\left(x^2+1\right)=8y-2y^2-2xy\\y\left(x+y\right)^2=2\left(x^2+1\right)+7y\end{cases}}}\)
\(\Rightarrow y\left(x+y\right)^2=-2y^2-2xy+15y\)
\(\Leftrightarrow y\left(x+y\right)^2+2y^2+2xy-15y=0\)
\(\Leftrightarrow y\left[\left(x+y\right)^2+2\left(x+y\right)-15\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\\\left(x+y\right)^2+2\left(x+y\right)-15=0\end{cases}}\)
+ Nếu \(y=0\), thay vào phần trên của HPT \(\left(1\right)\), ta được: \(x^2+1=0\)
Mà \(x^2+1\ge1>0\left(\forall x\right)\)
=> Mâu thuẫn => Không tồn tại x,y thỏa mãn HPT
+ Nếu \(\left(x+y\right)^2+2\left(x+y\right)-15=0\)
\(\Leftrightarrow\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]-16=0\)
\(\Leftrightarrow\left(x+y+1\right)^2-\left(4\right)^2=0\)
\(\Leftrightarrow\left(x+y+5\right)\left(x+y-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+5=0\\x+y-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\left(y+5\right)\\x=3-y\end{cases}}}\)
Đến đây ta lại xét 2 TH sau:
+ TH1: \(x=-\left(y+5\right)\), thay vào phần trên của HPT \(\left(1\right)\)ta được:
\(\left(y+5\right)^2+y^2-\left(y+5\right)y+1=4y\)
\(\Leftrightarrow y^2+10y+25+y^2-y^2-5y+1-4y=0\)
\(\Leftrightarrow y^2+y+26=0\)
\(\Leftrightarrow\left(y+\frac{1}{2}\right)^2+\frac{103}{4}=0\)
Mà \(\left(y+\frac{1}{2}\right)^2+\frac{103}{4}\ge\frac{103}{4}>0\left(\forall y\right)\)
=> Mâu thuẫn
=> Không tồn tại x,y thỏa mãn HPT
+ TH2: \(x=3-y\), thay vào phần trên của HPT \(\left(1\right)\), ta được:
\(\left(3-y\right)^2+y^2+\left(3-y\right)y+1=4y\)
\(\Leftrightarrow9-6y+y^2+y^2+3y-y^2+1-4y=0\)
\(\Leftrightarrow y^2-7y+10=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-2=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2\\y=5\end{cases}\Leftrightarrow}\orbr{\begin{cases}\hept{\begin{cases}x=1\\y=2\end{cases}}\\\hept{\begin{cases}x=-2\\y=5\end{cases}}\end{cases}}}\)
Vậy \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)hoặc \(\hept{\begin{cases}x=-2\\y=5\end{cases}}\)
Em mới hc lp 8 nên ko bt làm có đúng ko ạ!!
Ở đoạn gần cuối em viết phương trình bị lỗi ko hiện nên em làm tiếp chỗ đó ạ:
\(...\)
\(\left(y-2\right)\left(y-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-2=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2\\y=5\end{cases}}}\)
+ Nếu \(y=2\)thì thay vào PT \(y=3-x\)\(\Rightarrow x=1\)
+ Nếu \(y=5\)thì thay vào PT \(y=3-x\)\(\Rightarrow x=-2\)
\(...\)