cho x>=xy+1. tìm max của biểu thức P=\(\frac{xy}{x^2+y^2}\)
cho x,y thực thỏa mãn 5x2+\(\frac{1}{x^2}\)+\(\frac{y^2}{4}\)=5. tìm max của biểu thức T = xy.
giúp mình với cảm ơn !!!
A=\(\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)
a, Rút gọn biểu thức
b, Cho \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\)Tìm Max A
a/ Bạn tự tìm ĐKXĐ
\(A=\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{x}\left(\sqrt{y}+1\right)}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{x}\left(\sqrt{y}+1\right)}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)
Xét
\(=\frac{\left(\sqrt{x}+1\right)\left(1-\sqrt{xy}\right)+\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)+\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}{\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}\)\(=\frac{\sqrt{x}-x\sqrt{y}+1-\sqrt{xy}+xy+\sqrt{xy}+x\sqrt{y}+\sqrt{x}+1-xy}{\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}\)
\(=\frac{2\sqrt{x}+2}{\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}\)
\(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\)\(=\frac{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{xy}+\sqrt{x}\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\)
\(=\frac{xy-1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}-x\sqrt{y}+\sqrt{x}-\sqrt{xy}+1}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\)
\(=\frac{-2\sqrt{xy}-2x\sqrt{y}}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}=\frac{-2\sqrt{xy}\left(\sqrt{x}+1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\)
\(\Rightarrow A=\frac{2\left(\sqrt{x}+1\right)}{\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}:\frac{2\sqrt{xy}\left(\sqrt{x}+1\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}=\frac{1}{\sqrt{xy}}\)
b/ Áp dụng BĐT \(\left(a+b\right)^2\ge4ab\) với \(a=\frac{1}{\sqrt{x}},b=\frac{1}{\sqrt{y}}\) được :
\(A=\frac{1}{\sqrt{x}.\sqrt{y}}\le\frac{1}{4}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)^2=\frac{1}{4}.6^2=9\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x}=\sqrt{y}\\\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\end{cases}}\Leftrightarrow x=y=\frac{1}{9}\)
Vậy ........................................................
Cho các số thực x ; y thỏa mãn \(\left(x+y-1\right)^2=xy\)
Tìm GTNN của biểu thức \(P=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\)
Cho các số thực x,y thỏa mãn \(\left(x+y-1\right)^2=xy\). Tìm GTNN của biểu thức
P= \(\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\)
bài 1, cho biểu thức: A=\(\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\)
a, Tìm điều kiện xác định, và rút gọn biểu thức A
b, Tính giá trị của A khi x=\(3-2\sqrt{2}\)
c, Tìm giá trị nhỏ nhất của A
bài 2, Cho biểu thức: A=\(\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)
a, Rút gọn biểu thức, ta được A=1 b, cho \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\)tìm MAX A
1.
a,
\(A\text{ xác định }\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne0\\x-\sqrt{x}\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\\x\ne0\end{matrix}\right.\)
\(\text{Vậy A xác định }\Leftrightarrow x>0\text{ và }x\ne1\)
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\)
\(=\left(\frac{\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\sqrt{x}-1\right)\)
\(=\frac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\frac{x-2}{\sqrt{x}}\)
b, \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)
\(A=\frac{x-2}{\sqrt{x}}=\frac{3-2\sqrt{2}-2}{\sqrt{2}-1}\)
\(=\frac{1-2\sqrt{2}}{\sqrt{2}-1}=-\frac{\left(\sqrt{2}-1\right)\left(2+\sqrt{2}+1\right)}{\sqrt{2}-1}=-3-\sqrt{2}\)
1.a)\(ĐKXĐ:\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne0\\x-\sqrt{x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\\x\ne0;x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\)
\(=\frac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)\)
\(=\frac{x+2}{\sqrt{x}}\)
b)\(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)
Thay x vào A ta được
\(A=\frac{3-2\sqrt{2}+2}{\sqrt{\left(\sqrt{2}-1\right)^2}}\)
\(=\frac{\sqrt{2}+6-1-3\sqrt{2}}{\sqrt{2}-1}\)(vì \(\sqrt{2}>1\))
\(=\frac{\sqrt{2}\left(1+3\sqrt{2}\right)-\left(1+3\sqrt{2}\right)}{\sqrt{2}-1}\)
\(=\frac{\left(\sqrt{2}-1\right)\left(1+3\sqrt{2}\right)}{\sqrt{2}-1}=1+3\sqrt{2}\)
c)\(A=\frac{x+2}{\sqrt{x}}=\sqrt{x}+\frac{2}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{2}{\sqrt{x}}}=2\sqrt{2}\)
Dấu "=" xảy ra khi \(x=2\)
\(\Rightarrow Min_A=2\sqrt{2}\) khi x=2
Tìm điều kiện của x , y để biểu thức A lớn hơn 1 :
\(A=\left(\frac{x}{y^2+xy}-\frac{x-y}{x^2+xy}\right):\left(\frac{y^2}{x^3-xy^2}+\frac{1}{x+y}\right):\frac{x}{y}\)
Cho x;y là hai số thực khác 0 thỏa mãn : \(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)
Tìm MIN và MAX của biểu thức : \(A=2013-xy\)
Đặt \(B=xy=2013-A\) thế vô cái cần tìm thì được
\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow x^2y^2+20x^4-10x^2+1=0\)
\(\Leftrightarrow20x^4-10x^2+1+B^2=0\)
\(\Leftrightarrow B^2=\frac{1}{4}-\left(\sqrt{20}x^2-\frac{\sqrt{5}}{2}\right)^2\le\frac{1}{4}\)
\(\Leftrightarrow-\frac{1}{2}\le B\le\frac{1}{2}\)
\(\Leftrightarrow-\frac{1}{2}\le2013-A\le\frac{1}{2}\)
\(\Leftrightarrow2012,3\le A\le2013,5\)
bạn chưa ghi gtnn , gtln xảy ra khi x=? và y=?
cho x;y dương . TM xy(x+y)=x^2+y^2- xy . tìm A max=\(\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)
Cho biểu thức : \(P=\frac{2}{x}-\left(\frac{x^2}{x^2-xy}+\frac{x^2-y^2}{xy}-\frac{y^2}{y^2-xy}\right):\frac{x^2-xy+y^2}{x-y}\)
a) Rút gọn P
b)Tìm giá trị của B với \(\left|2x-1\right|=1\)và \(\left|y+1\right|=\frac{1}{2}\)
ĐKXĐ : \(x,y\ne0\)\(;\)\(x\ne y\)
\(a)\) \(P=\frac{2}{x}-\left(\frac{x^2}{x^2-xy}+\frac{x^2-y^2}{xy}-\frac{y^2}{y^2-xy}\right):\frac{x^2-xy+y^2}{x-y}\)
\(P=\frac{2}{x}-\left(\frac{x^2y}{xy\left(x-y\right)}+\frac{\left(x-y\right)^2\left(x+y\right)}{xy\left(x-y\right)}+\frac{xy^2}{xy\left(x-y\right)}\right):\frac{x^2-xy+y^2}{x-y}\)
\(P=\frac{2}{x}-\left(\frac{xy\left(x+y\right)+\left(x-y\right)^2\left(x+y\right)}{xy\left(x-y\right)}\right):\frac{x^2-xy+y^2}{x-y}\)
\(P=\frac{2}{x}-\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x-y\right)}.\frac{x-y}{x^2-xy+y^2}\)
\(P=\frac{2y}{xy}-\frac{x+y}{xy}=\frac{y-x}{xy}\)
\(b)\)
+) Với \(\left|2x-1\right|=1\)\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)
Mà \(x\ne0\) ( ĐKXĐ ) nên \(x=1\)
+) Với \(\left|y+1\right|=\frac{1}{2}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}y+1=\frac{1}{2}\\y+1=\frac{-1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{-1}{2}\\y=\frac{-3}{2}\end{cases}}}\)
Thay \(x=1;y=\frac{-1}{2}\) vào \(A=\frac{y-x}{xy}\) ta được : \(A=\frac{\frac{-1}{2}-1}{1.\frac{-1}{2}}=\frac{\frac{-3}{2}}{\frac{-1}{2}}=3\)
Thay \(x=1;y=\frac{-3}{2}\) vào \(A=\frac{y-x}{xy}\) ta được : \(A=\frac{\frac{-3}{2}-1}{1.\frac{-3}{2}}=\frac{\frac{-5}{2}}{\frac{-3}{2}}=\frac{15}{4}\)
Vậy ...
chịu thôi không biết đâu