Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 4 2018 lúc 14:52

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

- Giả sử AD vừa là đường trung tuyến, vừa là đường phân giác của tam giác ABC.

Ta cần chứng minh ∆ABC cân tại A.

Kéo dài AD một đoạn DA1 sao cho DA1 = AD.

- ∆ADB và ∆A1DC có

AD = DA1 (cách vẽ)

BD = CD (do D là trung điểm BC)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ADB = ∆A1DC (c.g.c)

⇒ Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 (hai góc tương ứng), AB = A1C (hai cạnh tương ứng) (1)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ACA1 cân tại C ⇒ AC = A1C (2)

Từ (1) và (2) ⇒ AB = AC.

Vậy ∆ABC cân tại A

Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.

 

Nguyễn Thanh Quân lớp 7/...
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 4 2022 lúc 7:54

Xét ΔABC có 

AM là đường trung tuyến

AM là đường phân giác

Do đó: ΔABC cân tại A

Nguyễn Tân Vương
16 tháng 4 2022 lúc 10:50

\(\text{Xét }\Delta ABC\text{ có:}\)

\(\left\{{}\begin{matrix}AM\text{ là đường phân giác(gt)}\\AM\text{ là đường trung tuyến(gt)}\end{matrix}\right.\)

\(\Rightarrow\Delta ABC\text{ cân tại A}\)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 6 2019 lúc 17:03

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Kẻ MH ⊥ AB, MK ⊥ AC

Vì AM là tia phân giác của ∠(BAC) nên MH = MK (tính chất tia phân giác)

Xét hai tam giác MHB và MKC, ta có:

∠(MHB) = ∠(MKC) = 90º

MH = MK (chứng minh trên)

MB = MC (gt)

Suy ra: ΔMHB = ΔMKC (cạnh huyền, cạnh góc vuông)

Suy ra: ∠B = ∠C (hai góc tương ứng)

Vậy tam giác ABC cân tại A.

nguyễn hoàng mai
Xem chi tiết
nghekcs
25 tháng 3 2021 lúc 15:27

- Giả sử AD vừa là đường trung tuyến, vừa là đường phân giác của tam giác ABC.

Ta cần chứng minh ∆ABC cân tại A.

Kéo dài AD một đoạn DA1 sao cho DA1 = AD.

- ∆ADB và ∆A1DC có

AD = DA1 (cách vẽ)

BD = CD (do D là trung điểm BC)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ADB = ∆A1DC (c.g.c)

⇒ Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 (hai góc tương ứng), AB = A1C (hai cạnh tương ứng) (1)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ACA1 cân tại C ⇒ AC = A1C (2)

Từ (1) và (2) ⇒ AB = AC.

Vậy ∆ABC cân tại A

Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.

Khách vãng lai đã xóa
ánh tuyết
Xem chi tiết
Nguyễn Tuấn Minh
4 tháng 4 2017 lúc 20:08

a,b,c,d đều đúng

Mình nghĩ vậy

Trương Phú Nhuận
4 tháng 4 2017 lúc 20:18

Đáp án là A,B,C,D

Nguyễn Thị Quỳnh Trang
Xem chi tiết
Kakashi Hakate
13 tháng 5 2016 lúc 19:52

Dựa vào sách giáo khoa ý

Cold Wind
13 tháng 5 2016 lúc 20:15

A B C D Cả 4 câu đều là 1 hình như thế này, chỉ có kí hiệu khác nhau, bạn tự dựa vào nội dung câu hỏi mà kí hiệu lên hình nhé.

Câu 1:

Xét tam giác ABD và tam giác ACD:

ADB= ADC =90o

AD chung

DB= DC

=> tam giác ABD = tam giác ACD (2 cạnh góc vuông)

=> góc B = góc C (2 góc tương ứng)

Vậy tam giác ABC cân

Câu 2:

Chứng minh y chang câu 1

Câu 3:

Xét tam giác ABD và tam giác ACD:

ADB= ADC =90o

AD chung

BAD = CAD

=> tam giác ABD = tam giác ACD (cạnh góc vuông_ góc nhọn)

=> góc B = góc C (2 góc tương ứng)

Vậy tam giác ABC cân

Câu 4:

Chứng minh giống hệt câu 3.

Sách Giáo Khoa
Xem chi tiết
Đào Vũ Phong
17 tháng 5 2017 lúc 16:11

Khi một tam giác có đường trung tuyến đồng thời là đường phân giác thì đó là tam giác cân.

Ở đây tam giác ABC có AM là trung tuyến đồng thời là phân giác vậy

=> tam giác ABC là tam giác cân (tính chất tam giác cân)

Nguyễn Ngọc Sáng
25 tháng 5 2017 lúc 8:46

Ta có hình vẽ :

A B C M H

Trên tia đổi của tia MA lấy điểm H sao cho MA=MH

Xét \(\Delta MBH\)\(\Delta MCA\) có:

\(\left\{{}\begin{matrix}AM=HM\left(theocachve\right)\\\widehat{BMH}=\widehat{CMA\left(\text{đ}^2\right)}\\BM=CM\left(AMlatrungtuyen\right)\end{matrix}\right.\)

=> \(\Delta MBH\) = \(\Delta MCA\) (c.g.c)

=> +) BH=CA ( hai cạnh tương ứng) (1)

+) \(\widehat{BHM}=\widehat{CAM}\) ( hai góc tương ứng ) (2)

Ta lại có:

AM là phân giác => \(\widehat{BAM}=\widehat{MAC}\) (3)

Từ (2) và (3) suy ra: \(\widehat{BAM}=\widehat{MHB}\)

=> \(\Delta HBA\) là tam giác cân ( vì có hai góc ở đáy bằng nhau )

=> AB=HB ( hai cạnh bên của tam giác cân ) (4)

Từ (1) và (4) suy ra :

AB=AC

=> \(\Delta ABC\) là tam giác cân ( vì có hai cạnh trong tam giác bằng nhau )

( đ.p.c.m )

いがつ
26 tháng 3 2018 lúc 11:55

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Kẻ MH ⊥ AB, MK ⊥ AC

Vì AM là tia phân giác của ∠(BAC) nên MH = MK (tính chất tia phân giác)

Xét hai tam giác MHB và MKC, ta có:

∠(MHB) = ∠(MKC) = 900

MH = MK (chứng minh trên)

MB = MC (gt)

Suy ra: ΔMHB = ΔMKC (cạnh huyền, cạnh góc vuông)

Suy ra: ∠B = ∠C (hai góc tương ứng)

Vậy tam giác ABC cân tại A.

Nguyễn Xạ Điêu
Xem chi tiết
Kid Kudo Đạo Chích
26 tháng 4 2016 lúc 16:01
  MÔN ĐẠI CƯƠNGÔN THI ĐẠI HỌCTOÁN HỌCNGỮ VĂNANH VĂNVẬT LÝHÓA HỌCSINH HỌCLỊCH SỬĐỊA LÝTRUYỆN CỔ TÍCHSóng - Xuân Quỳnh hotĐàn ghi ta của Lor-ca - Thanh Thảo hotTOÁN HỌCToán lớp 7

Bài 42 trang 73 sgk toán lớp 7- tập 2

Cập nhật lúc: 08/07/2014 17:21 pm Danh mục: Toán lớp 7

  Chứng minh định líBài 38 trang 73 sgk toán lớp 7- tập 2Bài 40 trang 73 sgk toán lớp 7- tập 2Bài 36 trang 72 sgk toán lớp 7- tập 2Bài 42 trang 73 sgk toán lớp 7- tập 2Bài 39 trang 73 sgk toán lớp 7- tập 2

Xem thêm: Tính chất ba đường phân giác của tam giác

  

42. Chứng minh định lí : Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân

Gợi ý : Trong ∆ABC, nếu AD vừa là đường trung tuyến vừa là đường phân giác thì kéo dài AD một đoạn AD1 sao cho DA1 = AD

Hướng dẫn:

Giả sử  ∆ABC có AD là phân giác  và DB = DC, ta chứng minh  ∆ABC  cân tại A

Kéo dài AD một đoạn DA1 = AD

Ta có:   ∆ADC =  ∆A1DC (c.g.c)

Nên 

mà  (gt)

=> 

=>   ∆ACAcân tại C

Ta lại có: AB = A1C ( ∆ADB = ∆A1DC)

              AC = A1C ( ∆ACAcân tại C)

=> AB = AC

Vậy  ∆ABC cân tại A

Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân

 

 

 
Ngọc Hàn Băng Nhi
Xem chi tiết
Minh Thư
7 tháng 12 2016 lúc 20:54

Để mik giúp bạn nha Ngọc Hàn Băng Nhi!

GT : ∆ABC

Hai phân giác BE, CF cắt nhau tại I

AI là tia phân giác của góc A

KL: IH = IK = IL

- Vì I nằm trên tia phân giác BE của góc B nên IL = IH (1) (theo định lí 1 về tính chất của tia phân giác).

- Tương tự, ta có IK = IH (2).

- Từ (1) và (2) suy ra IK = IL (= IH), hay I cách đều hai cạnh AB, AC của góc A. Do đó I nằm trên tia phân giác của góc A (theo định lí 2 về tính chất của tia phân giác), hay AI là đường phân giác xuất phát từ đỉnh A của tam giác ABC.

Tóm lại, ba đường phân giác của tam giác ABC cùng đi qua điểm I và điểm này cách đều ba cạnh của tam giác, nghĩa là : IH = IK = IL.

Đây là chỉ là hướng dẫn thui( Do gõ nhìu mỏi tay wá!) Có gì bạn tự triểm khai ra nhé! Chúc bạn học tốt!

Đức Hiếu
19 tháng 5 2017 lúc 13:30

A B C D

Vì tam giác ABC cân tại A nên góc ABC= góc ACB(theo tính chất của tam giác cân)

Xét tam giác ABD và tam giác ACD ta có:

góc BAD=góc CAD(gt); AB=AC(gt); góc ABD=góc ACD(cmt)

Do đó tam giác ABD= tam giác ACD(g.c.g)

=> BD=CD=> AD là trung tuyến của cạnh BC của tam giác ABC(đpcm)

Chúc bạn học tốt!!!