Cho M = x ( x- 3). Với giá trị nào của x thì:
a) M > 0
b) M < 0
. Cho số hữu tỉ x = \(\dfrac{\text{20m +11}}{-2016}\) . Với giá trị nào của m thì:
a) x là số dương
b) x là số âm.
a: Để x là số dương thì 20m+11<0
hay \(m< -\dfrac{11}{20}\)
b: Để x là số âm thì 20m+11>0
hay \(m>-\dfrac{11}{20}\)
Với giá trị nào của m thì phương trình có hai nghiệm phân biệt:
a) 3x2 - 3x + m - 2 = 0
b) (m - 5)x2 - x + 1 = 0
a: Δ=(-3)^2-4(m-2)
=9-4m+8
=17-4m
Đểphương trình có 2 nghiệm phân biệt thì -4m+17>0
=>-4m>-17
=>m<17/4
b: TH1: m=5
=>-x+1=0
=>x=1(loại)
TH2: m<>5
Δ=(-1)^2-4(m-5)
=1-4m+20=21-4m
Để phương trình có hai nghiệm phân biệt thì 21-4m>0
=>4m<21
=>m<21/4
Cho hệ pt
\(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
a) Xác định các GT nguyên m của hệ để hệ có ngo duy nhất (x;y) sao cho x>0,y>0
b) Với giá trị nào của m thì hệ có nghiêm x,y là các số dương
a. Hệ có nghiệm duy nhất \(\Rightarrow m\ne\pm2\)
\(\left\{{}\begin{matrix}mx+4y=10-m\\mx+m^2y=4m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}mx+4y=10-m\\\left(m^2-4\right)y=5m-10\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{5}{m+2}\\x=\dfrac{-m+8}{m+2}\end{matrix}\right.\)
Để \(x>0,y>0\Rightarrow\left\{{}\begin{matrix}\dfrac{5}{m+2}>0\\\dfrac{-m+8}{m+2}>0\end{matrix}\right.\) \(\Rightarrow-2< m< 8\)
\(\Rightarrow m=\left\{-1;0;...;7\right\}\)
b. Hệ có nghiệm là các số dương khi \(-2< m< 8\)
Cho hàm số y=(3m-4)x\(^2\) với m\(\ne\)\(\dfrac{4}{3}\). Tìm các giá trị của tham số m để hàm số :
a) Đạt giá trị lớn nhất là 0
b) Đạt giá trị nhỏ nhất là 0
a) Để m đạt giá trị lớn nhất là 0 thì \(y=\left(3m-4\right)x^2\le0\) ⇔ \(3m-4\le0\)
⇔ \(m\le\dfrac{4}{3}\) nhưng theo điều kiện
thì m ≠ \(\dfrac{4}{3}\)
➤ Để m đạt giá trị lớn nhất là 0 thì \(m< \dfrac{4}{3}\)
b) Để m đạt giá trị nhỏ nhất là 0 thì \(y=\left(3m-4\right)x^2\ge0\) ⇔ \(3m-4\ge0\)
⇔ \(m\ge\dfrac{4}{3}\) nhưng theo điều kiện
thì m ≠ \(\dfrac{4}{3}\)
➤ Để m đạt giá trị nhỏ nhất là 0 thì \(m>\dfrac{4}{3}\)
1/ Cho m ϵ Z, tìm số nguyên x biết: x - 5 = m thì:
A. x = m + 5. B. x = m - 5. C. x = 5 - m. D. x = -m - 5.
2/ Số nào dưới đây không phải là bội của -6?
A. -12. B. 0. C. -3. D. -18.
3/ Khi tia OA nằm giữa hai tia OB và OC thì:
A. \(AÔB+AÔC=BÔC\). B. \(AÔB+BÔC=AÔC\).
C. \(BÔC+CÔA=BÔA\). D. \(AÔB=AÔC\).
4/ Hai góc phụ nhau là hai góc có tổng số đo bằng:
A. 180o. B. 100o. C. 90o. D. 45o.
cho M = x. ( x - 3 ) với giá trị nào của x thì : a) M = 0 , b) M < 0
a) Khi M = 0 \(\Leftrightarrow x.\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)
Vậy khi x = 0 hoặc x = 3 thì M = 0
b) \(M< 0\Leftrightarrow x.\left(x-3\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x-3< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-3>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 3\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x>3\end{cases}}\) (loại)
Vậy \(0< x< 3\) thì M < 0
ta có M = x.(x-3)
= \(x^2-3x\)
nếu M = 0 thì \(x^2-3x=0\)
= \(x\left(x-3\right)=0\)
= \(\orbr{\begin{cases}x=0\\x-3=0=>x=3\end{cases}}\)
nếu M < 0 thì \(x^2-3x< 0\)
= \(x\left(x-3\right)< 0\)
= \(\orbr{\begin{cases}x< 0\\x-3< 0=>x< 3\end{cases}}\)
bài 1 : Cho hàm số y=(m2-4m+3)x2
Tìm x để :
a, Hàm số đồng biến với x>0
b, hàm số nghịch biến với x>0
Bài 2 cho hàm số y=(m2-6m+12)x2
a, chứng tỏ rằng hàm số nghịch biến khi x<0 và đồng biến khi x>0
b,Khi m=2 tìm x để y=-2
c,khi m =5 tính giá trị của y biết x=1+căn 2
d, tìm m khi x=1 và y = 5
Cho hàm số y = (4m + 2) x2 với m ≠ -\(\dfrac{1}{2}\). Tìm các giá trị của tham số m để hàm số :
a) Nghịch biến với mọi x < 0
b) Đạt giá trị lớn nhất là 0
a,nghịch biến x<0
`<=>4m+2<0`
`<=>4m< -2`
`<=>m< -1/2`
`b,(4m+2)x^2<=0`
Mà `x^2>=0`
`<=>4m+2<0`
`<=>4m<-2`
`<=>m<-1/2`
a) Để hàm số nghịch biến với mọi x<0 thì 4m+2>0
\(\Leftrightarrow4m>-2\)
hay \(m>-\dfrac{1}{2}\)
Vậy: Để hàm số nghịch biến với mọi x<0 thì \(m>-\dfrac{1}{2}\)
b) Để hàm số đạt giá trị lớn nhất là 0 thì 4m+2<0
hay \(m< -\dfrac{1}{2}\)
Cho M = x ( x-3 ) với giá trị nào của x thì M lớn hơn 0
Ta có M > 0 <=> x(x - 3) > 0
Xét 2 trường hợp
Trường hợp 1: x > 0 và x - 3 > 0 => x > 3
Trường hợp 2: x < 0 và x - 3 < 0 => x < 0
Vậy với x > 3 và x < 0 thì M > 0
Chứng minh các phương trình sau là phương trình bậc nhất 1 ẩn với mọi giá trị của tham số m:
a) (m2 + 1)x - 3 =0
b) (m2 + 2m + 3)x + m - 1 = 0
c) (m2 + 2)x + 4 = 0
d) (m2 - 2m + 2)x + m = 0
a. m2 ≥ 0 ∀ m
=> m2 +1> 0 ∀ m
b. m2 +2m +3 = m2 + 2m +1 +2 = (m + 1)2 + 2 > 0 ∀ m
c. m2 ≥ 0 ∀ m
=> m2 +2> 0 ∀ m
d. m2 - 2m +2 = m2 -2m + 1 +1 = (m - 1)2 + 1 > 0 ∀ m
a) Để phương trình \(\left(m^2+1\right)x-3=0\) là phương trình bậc nhất một ẩn thì \(m^2+1\ne0\)
\(\Leftrightarrow m^2\ne-1\)
mà \(m^2\ge0\forall m\)
nên \(m^2\ne-1\forall m\)
\(\Leftrightarrow m^2+1\ne0\forall m\)
Vậy: Phương trình \(\left(m^2+1\right)x-3=0\) là phương trình bậc nhất một ẩn với mọi giá trị của tham số m
b) Để phương trình \(\left(m^2+2m+3\right)x+m-1=0\) là phương trình bậc nhất một ẩn thì \(m^2+2m+3\ne0\)
\(\Leftrightarrow\left(m+1\right)^2+2\ne0\)
mà \(\left(m+1\right)^2+2\ge2>0\forall m\)
nên \(\left(m+1\right)^2+2\ne0\forall m\)
hay \(m^2+2m+3\ne0\forall m\)
Vậy: Phương trình \(\left(m^2+2m+3\right)x+m-1=0\) luôn là phương trình bậc nhất một ẩn với mọi tham số m
c) Để phương trình \(\left(m^2+2\right)x-4=0\) là phương trình bậc nhất một ẩn thì \(m^2+2\ne0\)
\(\Leftrightarrow m^2\ne-2\)
mà \(m^2\ge0\forall m\)
nên \(m^2\ne-2\forall m\)
\(\Leftrightarrow m^2+2\ne0\forall m\)
Vậy: Phương trình \(\left(m^2+2\right)x+4=0\) là phương trình bậc nhất một ẩn với mọi giá trị của tham số m
d) Để phương trình \(\left(m^2-2m+2\right)x+m=0\) là phương trình bậc nhất một ẩn thì \(m^2-2m+2\ne0\)
\(\Leftrightarrow\left(m-1\right)^2+1\ne0\)
mà \(\left(m-1\right)^2+1\ge1>0\forall m\)
nên \(\left(m-1\right)^2+1\ne0\forall m\)
hay \(m^2-2m+2\ne0\forall m\)
Vậy: Phương trình \(\left(m^2-2m+2\right)x+m=0\) luôn là phương trình bậc nhất một ẩn với mọi tham số m