tìm m để phương trình có 4 nghiệm phân biệt
\(x^4-x^3+mx^2+3x+1=0\)
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
tìm m để phương trình có 4 nghiệm phân biệt
a) \(x^4-x^3+mx^2+2x+4=0\)
b) \(x^4+3x^3+mx^2+3x+1=0\)
a) \(x=0\)không phải là nghiệm của phương trìn.
Với \(x\ne0\): chia cả hai vế cho \(x^2\)ta được:
\(x^2-x+m+\frac{2}{x}+\frac{4}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{4}{x^2}\right)-\left(x-\frac{2}{x}\right)+m=0\)(1)
Đặt \(t=x-\frac{2}{x}\Rightarrow x^2+\frac{4}{x^2}=t^2+4\).
\(t=x-\frac{2}{x}\Rightarrow x^2-2t-2=0\)có \(ac=1.\left(-2\right)=-2< 0\)nên phương trình luôn có hai nghiệm phân biệt với mọi \(t\).
(1) tương đương với:
\(t^2+4-t+m=0\)
\(\Leftrightarrow t^2-t+m+4=0\)(2)
Để phương trình đã cho có 4 nghiệm phân biệt thì (2) có 2 nghiệm phân biệt.
Khi đó \(\Delta>0\Leftrightarrow1-4\left(m+4\right)>0\Leftrightarrow m< \frac{-15}{4}\).
b) Bạn làm tương tự câu a).
Cho phương trình: \(x^2\) - mx + 2m - 4 =0 (1) (với là ẩn, mlà tham số).
a) Tìm m để phương trình có nghiệm x = 3. Tìm nghiệm còn lại.
b) Tìm m để phương trình (1) có hai nghiệm phân biệt x1; x2 thoả mãn: \(x^2_1\) + m\(x_2\) = 12.
a) \(x^2-mx+2m-4=0\) nhận \(x=3\) là nghiệm nên:
\(3^2-m.3+2m-4=0\)
\(\Leftrightarrow9-3m+2m-4=0\)
\(\Leftrightarrow m-5=0\)
\(\Leftrightarrow m=5\)
Vậy phương trình trở thành: \(x^2-5x+6=0\) nhận x=3 là nghiệm vậy nghiệm còn lại là:
\(\Delta=\left(-5\right)^2-4.1.6=1\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{1}}{2.1}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{1}}{2.1}=2\end{matrix}\right.\)
Vậy nghiệm còn lại là \(x=2\)
tìm m để phương trình sau có đúng 4 nghiệm phân biệt : x*4 - x*3 - (2m+1)x²+mx+m²+m=0
Cho phương trình: x4-mx3+(m+1)x2-m(m+1)x+(m+1)2=0. Tìm m để phương trình có 4 nghiệm đôi một phân biệt
cho phương trình : x^2 - mx + m - 1 = 0
Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn |x1| + |x2| = 4
Ta có: \(\Delta\) = m2 - 4(m - 1) = m2 - 4m + 4 = (m - 2)2 \(\ge\) 0
\(\Rightarrow\) x1 = \(\dfrac{m-\left(m-2\right)}{2}=1\); x2 = \(\dfrac{m+m-2}{2}=m-1\)
Ta có: |x1| + |x2| = 4
\(\Leftrightarrow\) 1 + |m - 1| = 4
\(\Leftrightarrow\) |m - 1| = 3
\(\Leftrightarrow\) \(\left[{}\begin{matrix}m-1=3\\m-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt!
cho phương tình \(x^2-mx+2m-4=0\) tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn \(x1^2=5x_2-1\)
\(x^2-mx+2m-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-m\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=m\end{matrix}\right.\)
Để phương trình có hai nghiệm phân biệt thì \(m\ne2\).
TH1: \(x_1=2,x_2=m\):
\(x_1^2=5x_2-1\Leftrightarrow4=5m-1\Leftrightarrow m=1\) (thỏa mãn).
TH2: \(x_1=m,x_2=2\):
\(x_1^2=5x_2-1\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\) (thỏa mãn).
a.Tìm m để phương trình \(3x^2+mx-35=0\) có 1 nghiệm là 7.Tìm nghiệm còn lại?
b.Tìm m để phương trình \(x^2-13x+m=0\) có 1 nghiệm là -5.Tìm nghiệm còn lại?
c.Tìm m để phương trình \(2x^2-\left(m+4\right)x+m=0\) có 1 nghiệm là -3.Tìm nghiệm còn lại?
b: Thay x=-5 vào pt, ta được:
\(m+25+65=0\)
hay m=-90
Theo đề, ta có: \(x_1+x_2=13\)
nên \(x_2=18\)
c: Thay x=-3 vào pt, ta được:
\(18+3\left(m+4\right)+m=0\)
=>4m+30=0
hay m=-15/2
Theo đề, ta có: \(x_1\cdot x_2=-\dfrac{m}{2}=\dfrac{15}{4}\)
hay \(x_2=-1.25\)
Cho pt : x4 + mx2 - m - 1 = 0
Tìm m để phương trình có 4 nghiệm phân biệt.
http://hocdethi.tranganhnam.xyz/2013/01/tim-m-e-phuong-trinh-co-4-nghiem.html
Bạn có thể tham khảo từ web này nhé