Giải hệ phương trình
\(xy^2-2y+3x^2=0\)
\(y^2+x^2y+2x=0\)
Giải hệ phương trình:
\(\hept{\begin{cases}x^3+y^2x+3x^2+y^2+3x-2y+1=0\\2y^3+xy^2+y^2-3x-3=0\end{cases}}\)
\(xy^2-2y+3x^2=0\)
\(x^2y+2x+y^2=0\)
Giải hệ phương trình trên
\(xy^2 -2y+3x^2 = 0 \)
\(x^2y+2x+y^2 =0 \)
giải hệ phương trình trên
Giải hệ phương trình \(\hept{\begin{cases}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{cases}}\)
Giúp mình với
NX: x = y = 0 là 1 nghiệm của hpt
Với x ; y khác 0 thì chia cả 2 vế của hệ đã cho cho xy ta được
\(\hept{\begin{cases}y-\frac{2y}{x}+\frac{3x}{y}=0\\\frac{y}{x}+x+\frac{2}{y}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y-\frac{2y}{x}=-\frac{3x}{y}\\x+\frac{2}{y}=-\frac{y}{x}\end{cases}}\)
Nhân 2 vế của hệ trên lại ta đc
\(\left(y-\frac{2y}{x}\right)\left(x+\frac{2}{y}\right)=3\)
\(\Leftrightarrow xy-\frac{4}{xy}=3\)
\(\Leftrightarrow\orbr{\begin{cases}xy=4\\xy=-1\end{cases}}\)
Dễ rồi nha
giải các hệ phương trình sau
a) \(\hept{\begin{cases}x^2+y^2-2xy=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
b)\(\hept{\begin{cases}xy+2x-y-2=0\\xy-3x+2y=0\end{cases}}\)
hãy dùng cái đầu bạn nhé :))))
\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
Xét từng TH với x-y=1 và x-y=-1
\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)
Xét từng TH x=1 và y=-2
109ubbbbbbbhy3333333333333
giải hệ phương trình
xy2 -2y+3x2 = 0
y2-x2y+2y = 0
giải hệ phương trình\(\left\{{}\begin{matrix}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}xy^2+3x^2=2y\\x^2y+y^2=-2x\end{matrix}\right.\)
Lời giải:
Lấy $x.\text{PT(1)}+y.\text{PT(2)}$ thu được:
$3x^3+y^3=-2x^2y^2$
Lấy $x.\text{PT(1)}-y\text{PT(2)}$ thu được:
$3x^3-y^3=4xy$
$\Rightarrow y^3=-x^2y^2-2xy$
PT (2)$\Leftrightarrow 2x^2y+2y^2=-4x$
$\Leftrightarrow 2x^2y+y(xy^2+3x^2)=-4x$
$\Leftrightarrow x[2xy+y(y^2+3x)]=-4x$
$\Leftrightarrow x(y^3+5xy)=-4x$
$\Leftrightarrow x=0$ hoặc $y^3+5xy=-4$
Nếu $x=0$ thì dễ tìm $y=0$
Nếu $y^3+5xy=-4$
$\Leftrightarrow -x^2y^2-2xy+5xy=-4$
$\Leftrightarrow -(xy)^2+3xy+4=0$
$\Leftrightarrow (4-xy)(xy+1)=0$
$\Leftrightarrow xy=4$ hoặc $xy=-1$
Nếu $xy=4$ thì:
$y^3=-4-5xy=-24\Rightarrow y=\sqrt[3]{-24}$
$x^3=\frac{y^3+4xy}{3}=\frac{-8}{3}\Rightarrow x=\sqrt[3]{\frac{-8}{3}}$ (tm)
Nếu $xy=-1$ thì:
$y^3=-4-5xy=1\Rightarrow y=1$
$x^3=\frac{y^3+4xy}{3}=-1\Rightarrow x=-1$ (tm)
Vậy..........