Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bảo ko nGu
Xem chi tiết
Vũ Thị Minh Ánh
18 tháng 12 2022 lúc 21:30

\(A=\left|x-1\right|+\left|x+3\right|=\left|1-x\right|+\left|x+3\right|\)

\(A\ge\left|1-x+x+3\right|=4\)

Vậy giá trị nhỏ nhất của biểu thức A là 4.

lê phương liên
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
Nguyễn Linh Chi
11 tháng 3 2020 lúc 15:38

ĐK: \(x\ge0\)

+) Với x = 0 => A = 0

+) Với x khác 0

Ta có: \(\frac{1}{A}=\frac{3}{4}\sqrt{x}-\frac{3}{4}+\frac{3}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{3}{4}\ge\frac{3}{4}.2-\frac{3}{4}=\frac{3}{4}\)

=> \(A\le\frac{4}{3}\)

Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1

Vậy max A = 4/3 tại x = 1

Còn có 1 cách em quy đồng hai vế giải đenta theo A thì sẽ tìm đc cả GTNN và GTLN 

Khách vãng lai đã xóa
Phương Linh
Xem chi tiết
Thắng Nguyễn
25 tháng 7 2016 lúc 16:35

Bài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1\(\ge\)0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967\(\ge\)0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2\(\le\)0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à

Sarah
26 tháng 7 2016 lúc 21:17

ài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1$\ge$≥0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967$\ge$≥0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2$\le$≤0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à

Đinh Lan Phương
Xem chi tiết
Xyz OLM
16 tháng 7 2023 lúc 17:08

ĐKXĐ : \(x>0\)

Áp dụng bất đẳng thức Cauchy cho 2 số dương \(\sqrt{x};\dfrac{4}{\sqrt{x}}\) ta có 

\(P=\sqrt{x}+\dfrac{4}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{4}{\sqrt{x}}}=4\)

Dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{4}{\sqrt{x}}\Leftrightarrow x=4\)

Nguyễn Đức Trí
16 tháng 7 2023 lúc 13:33

\(P=\sqrt[]{x}+\dfrac{4}{\sqrt[]{x}}\left(x>0\right)\)

\(P=\dfrac{x+4}{\sqrt[]{x}}=\dfrac{x+4}{\sqrt[]{x}}\)

Vì \(x>0;x+4>4\)

\(\Rightarrow P=\dfrac{x+4}{\sqrt[]{x}}>4\)

⇒ Không có giá trị nhỏ nhất

nguyenminhanh
Xem chi tiết
afa2321
Xem chi tiết
Trên con đường thành côn...
12 tháng 7 2021 lúc 17:01

undefined

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 23:39

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

Lườii
Xem chi tiết
Nguyễn Minh Quang
16 tháng 12 2020 lúc 11:22

Ta có hai trường hợp như sau :

TH1

\(x-2016\ge0\Leftrightarrow x\ge2016\) thì \(A=x-2016+x-1=2x-2017\ge2.2016-2017=2015\)

TH2

\(x-2016\le0\Leftrightarrow x\le2016\) thì \(A=2016-x+x-1=2015\)

vì vậy GTNN của A=2015

dấu bằng xảy ra khi \(x\le2016\)

Khách vãng lai đã xóa
Sun ...
Xem chi tiết
Minh Hiếu
23 tháng 12 2021 lúc 5:27

Vì \(\left\{{}\begin{matrix}\left|2x-27\right|^{2011}\text{≥0,∀x}\\\left(3y+10\right)^{2012}\text{≥0,∀y}\end{matrix}\right.\)

⇒ \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\text{≥0,∀x},y\)

Dấu "=" ⇔ \(\left\{{}\begin{matrix}2x-27=0\\3y+10=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{27}{2}\\y=-\dfrac{10}{3}\end{matrix}\right.\)

Vậy ...