CMR nếu x,y thuộc Z thì M=(xy - 1) (x^2015+y^2015) - (xy + 1)(x^2015- y^2015)chia hết cho 2
1) a) Cho (x+y+z)(xy+yz+zx)=xyz
C/m x2015+y2015+z2015=(x+y+z)2015
b)CM nếu x+y+z chia hết cho 6
A=(x+y)(y+z)(z+x)-2xyz chia hết cho 6
1. Cho (x+y+2) (2x+2y+xy) = 2xy
CMR: (x+y+z)2015=x2015+y2015+22015
1. Cho (x+y+2) (2x+2y+xy) = 2xy
CMR: (x+y+z)2015=x2015+y2015+22015
1) a) Cho (x+y+z)(xy+yz+zx)=xyz
C/m x2015+y2015+z2015=(x+y+z)2015
(x+y+z)(xy+yz+zx)=xyz
x2y+xyz+zx2+xy2+y2z+xyz+xyz+yz2+z2x=xyz
(x2y+xy2)+(xyz+zx2)+(y2z+xyz)+(yz2+z2x)+xyz=xyz
xy(x+y)+zx(y+x)+yz(y+x)+z2(y+x)+xyz=xyz
(x+y)(xy+xz+yz+z2)+xyz=xyz
(x+y)[(xy+xz)+(yz+z2)]+xyz=xyz
(x+y)[x(y+z)+z(y+z)]+xyz=xyz
(x+y)(x+z)(y+z)+xyz=xyz
(x+y)(x+z)(y+z)=xyz-xyz
(x+y)(x+z)(y+z)=0
=>\(\left[{}\begin{matrix}x+y=0\\x+z=0\\y+z=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-y\\x=-z\\y=-z\end{matrix}\right.\)
Với x=-z
=>VT= x2015+y2015+z2015=(-z)2015+z2015+y2015=y2015
VP=(x+y+z)2015=(-z+y+z)2015=y2015
Vậy x2015+y2015+z2015=(x+y+z)2015 với (x+y+z)(xy+yz+zx)=xyz
1,cho x,y,z thuộc N,thỏa mãn x+y+z=2015
CMR,A=\(\dfrac{x}{2015-z}+\dfrac{y}{2015-x}+\dfrac{z}{2015-y}\) ko phải là số nguyên
Cho (x+y+z).(xy+yz+zx)=xyz Chứng minh: x2015+ y2015+ z2015= (x+y+z)2015
1,cho x,y,z thuộc N,thỏa mãn x+y+z=2015
CMR,A=\(\frac{x}{2015-z}+\frac{y}{2015-x}+\frac{z}{2015-y}\)ko phải là số nguyên
cho 1/x+1/y+1/z=1/xyz
cmr;1/x^2015+1/y^2015+1/z^2015=1/x^2015+y^2015+z^2015
ho x^2 + y^2 + z^2 =xy + yz + xz và z^2015 + y^2015 + z^2015=3^2016 .Tìm x,y,z
Có: \(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\Leftrightarrow\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\)\(\Leftrightarrow x=y=z\)
Lại có: \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\)
\(\Leftrightarrow x^{2015}+x^{2015}+x^{2015}=3^{2016}\)
\(\Leftrightarrow3x^{2015}=3^{2016}\)
\(\Leftrightarrow x=3\)
Vậy \(x=y=z=3\)